Spectral approximation properties of isogeometric analysis with variable continuity

Vladimir Puzyrev1,2, Quanling Deng1,2, Victor Calo1,2,3
1Curtin Institute for Computation, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia
2Department of Applied Geology, Curtin University, Kent Street, Bentley, Perth, WA 6102, Australia
3Mineral Resources, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington, Perth, WA, 6152, Australia

Tài liệu tham khảo

Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008 Bazilevs, 2010, Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229, 10.1016/j.cma.2009.02.036 Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027 Cottrell, 2007, Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 4160, 10.1016/j.cma.2007.04.007 Cottrell, 2009 Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006 Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004 Hughes, 2014, Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Engrg., 272, 290, 10.1016/j.cma.2013.11.012 Gómez, 2008, Isogeometric analysis of the Cahn–Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333, 10.1016/j.cma.2008.05.003 V.M. Calo, H. Gomez, Y. Bazilevs, G. Johnson, T.J.R. Hughes, Simulation of engineering applications using isogeometric analysis, in: Proceedings of Tera Grid, 2008. Auricchio, 2013, Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Engrg., 263, 113, 10.1016/j.cma.2013.03.009 Collier, 2012, The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers, Comput. Methods Appl. Mech. Engrg., 213, 353, 10.1016/j.cma.2011.11.002 Collier, 2013, The cost of continuity: performance of iterative solvers on isogeometric finite elements, SIAM J. Sci. Comput., 35, A767, 10.1137/120881038 Collier, 2014, On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers, Internat. J. Numer. Methods Engrg., 100, 620, 10.1002/nme.4769 Garcia, 2017, The value of continuity: Refined isogeometric analysis and fast direct solvers, Comput. Methods Appl. Mech. Engrg., 316, 586, 10.1016/j.cma.2016.08.017 Garcia, 2017, Optimally refined isogeometric analysis, Procedia Comput. Sci., 108, 808, 10.1016/j.procs.2017.05.283 Thompson, 1994, Complex wavenumber Fourier analysis of the p-version finite element method, Comput. Mech., 13, 255, 10.1007/BF00350228 Ainsworth, 2004, Discrete dispersion relation for hp-version finite element approximation at high wave number, SIAM J. Numer. Anal., 42, 553, 10.1137/S0036142903423460 Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173, 10.1016/j.cma.2007.07.016 Kolman, 2014, Complex wavenumber Fourier analysis of the B-spline based finite element method, Wave Motion, 51, 348, 10.1016/j.wavemoti.2013.09.003 Dedè, 2015, Isogeometric numerical dispersion analysis for two-dimensional elastic wave propagation, Comput. Methods Appl. Mech. Engrg., 284, 320, 10.1016/j.cma.2014.09.013 Strang, 1973 Puzyrev, 2017, Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes, Comput. Methods Appl. Mech. Engrg., 320, 421, 10.1016/j.cma.2017.03.029 Piegl, 1997 Schillinger, 2012, An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249, 116, 10.1016/j.cma.2012.03.017 Dokken, 2013, Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30, 331, 10.1016/j.cagd.2012.12.005 Dalcin, 2016, PetIGA: A framework for high-performance isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 308, 151, 10.1016/j.cma.2016.05.011 Sarmiento, 2017, PetIGA-MF: a multi-field high-performance toolbox for structure-preserving B-splines spaces, J. Comput. Sci., 18, 117, 10.1016/j.jocs.2016.09.010 De Falco, 2011, GeoPDEs: a research tool for isogeometric analysis of PDEs, Adv. Eng. Softw., 42, 1020, 10.1016/j.advengsoft.2011.06.010 Pauletti, 2015, Igatools: An isogeometric analysis library, SIAM J. Sci. Comput., 37, C465, 10.1137/140955252 Calo, 2017, Quadrature blending for isogeometric analysis, Procedia Comput. Sci., 108, 798, 10.1016/j.procs.2017.05.143 Ainsworth, 2010, Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration, SIAM J. Numer. Anal., 48, 346, 10.1137/090754017 V.M. Calo, Q. Deng, V. Puzyrev, Dispersion optimized quadratures for isogeometric analysis, 2017, Submitted for publication. ArXiv preprint: https://arxiv.org/abs/1702.04540. Deng, 2018, Dispersion-minimizing quadrature rules for C1 quadratic isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 328, 554, 10.1016/j.cma.2017.09.025 Bartoň, 2017, Generalization of the Pythagorean eigenvalue error theorem and its application to isogeometric analysis