Spectral analysis of the one-speed transport operator and the functional model

Functional Analysis and Its Applications - Tập 33 Số 3 - Trang 199-207 - 1999
Yu. A. Kuperin, Serguei Naboko, Roman Romanov

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. B. Shikhov, Problems in the Mathematical Theory of Reactors. Linear Analysis [Russian], Atomizdat, Moscow, 1973.

B. Sz.-Nagy and C. Foiaş, Analyse Harmonique des Operateurs de l’Espace de Hilbert, Masson et C ie , Academiai Kiado, 1967.

B. S. Pavlov, “On separation conditions for the spectral components of a dissipative operator,” Izv. Akad. Nauk SSSR, Ser. Mat.,39, No. 1, 123–148 (1975); English transl. Math. USSR-Izv.,9, No. 1, 113–137 (1975).

S. N. Naboko, “Functional model of the perturbation theory and its applications to scattering theory,” Trudy Mat. Inst. Steklov.,147, 86–114 (1980).

J. Lehner, “The spectrum of the neutron transport operator for the infinite slab,” J. Math. Mech.,11, No. 2, 173–181 (1962).

M. A. Naimark, “Investigation of the spectrum and decomposition on eigenfunctions of non-self-adjoint differential operators of the second order,” Trudy Mosk. Mat. Obshch.,3, 181–270 (1954).

V. E. Lyantse, “On a differential operator with spectral singularities,” I, Mat. Sb.,64 (106), No. 4, 521–561 (1964); II, Mat. Sb.,65 (107), No. 1, 47–103 (1964).

L. A. Sakhnovich, “Dissipative operators with absolutely continuous spectrum,” Trudy Mosk. Mat. Obshch.,19, 211–270 (1968);. English transl. in Trans. Moscow Math. Soc.,19 (1968).

J. Lehner and G. Wing, “On the spectrum of an unsymmetric operator arising in the transport theory of neutrons,” Commun. Pure Appl. Math.,8, 217–234 (1955).

J. Lehner and G. Wing, “Solution of the linearized Boltzmann equation for the slab geometry,” Duke Math. J.,23, 125–142 (1956).

M. S. Brodskii, Triangular and Jordan Representations of Linear Operators, Transl. Math. Monographs, Vol. 32, Amer. Math. Soc., 1971.

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, 1975.

B. S. Pavlov, “Self-adjoint dilation of the dissipative Schrödinger operator and its resolution in terms of eigenfunctions,” Mat. Sb.,102, No. 4, 511–536 (1977); English transl. Math. USSR-Sb.,31, No. 4, 457–478 (1977).

N. Dunford and J. Schwartz, Linear Operators, Part III, Wiley, 1971.