Spectral analysis of the hypoelliptic Robin problem

Springer Science and Business Media LLC - Tập 65 Số 1 - Trang 171-199 - 2019
Kazuaki Taira1
1Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, R.A., Fournier, J.J.F.: Sobolev Spaces (Pure and Applied Mathematics), 2nd edn. Elsevier, Amsterdam (2003)

Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965)

Bourdaud, G.: $$L^{p}$$ L p -estimates for certain non-regular pseudo-differential operators. Comm. Partial Differ. Equ. 7, 1023–1033 (1982)

Boutet de Monvel, L.: Boundary problems for pseudo-differential operators. Acta Math. 126, 11–51 (1971)

Chazarain, J., Piriou, A.: Introduction à la Théorie des équations aux Dérivées Partielles Linéaires. Gauthier-Villars, Paris (1981)

Fujiwara, D., Uchiyama, K.: On some dissipative boundary value problems for the Laplacian. J. Math. Soc. Jpn. 23, 625–635 (1971)

Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order (Classics in Mathematics), reprint of the 1998th edn. Springer, New York (2001)

Greiner, P.: An asymptotic expansion for the heat equation. Arch. Ration. Mech. Anal. 41, 163–218 (1971)

Grubb, G.: Functional Calculus of Pseudodifferential Boundary Problems. Progress in Mathematics, vol. 65. Birkhäuser Inc, Boston (1986)

Grubb, G., Kokholm, N.J.: A global calculus of parameter-dependent pseudodifferential boundary problems in $$L_{p}$$ L p Sobolev spaces. Acta Math. 171, 165–229 (1993)

Hörmander, L.: Pseudo-differential operators and hypoelliptic equations. In: Proc. Sym. Pure Math., X, Singular integrals, A.P. Calderón (ed.), 138–183. American Mathematical Society, Providence, Rhode Island (1967)

Hörmander, L.: The analysis of linear partial differential operators III: pseudo-differential operators, reprint of the 1994th edn. Classics in Mathematics. Springer, Berlin, Heidelberg, New York, Tokyo (2007)

Iwasaki, C.: The asymptotic expansion of the fundamental solution for parabolic initial-boundary value problems and its application. Osaka J. Math. 31, 663–728 (1994)

Kannai, Y.: Hypoellipticity of certain degenerate elliptic boundary value problems. Trans. Am. Math. Soc. 217, 311–328 (1976)

Krietenstein, T., Schrohe, E.: Bounded $$H^{\infty }$$ H ∞ -calculus for a degenerate elliptic boundary value problem arXiv:1711.00286 (under review)

Kumano-go, H.: Pseudodifferential Operators. MIT Press, Cambridge (1981)

Lions, J.-L., Magenes. E.: Problèmes aux limites non-homogènes et applications 1, 2. Dunod, Paris (1968)

Mizohata, S.: The Theory of Partial Differential Equations. Cambridge University Press, London (1973)

Munkres, J.R.: Elementary Differential Topology. Annals of Mathematics Studies, No. 54. Princeton University Press, Princeton (1966)

Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations, Corrected Second Printing. Springer, New York (1984)

Rempel, S., Schulze, B.-W.: Index Theory of Elliptic Boundary Problems. Akademie, Berlin (1982)

Schrohe, E.: A short introduction to Boutet de Monvel’s calculus. In: J. Gil, D. Grieser and M. Lesch (eds.) Approaches to Singular Analysis, pp. 85–116, Oper. Theory Adv. Appl., vol. 125, Birkhäuser, Basel (2001)

Seeley, R.T.: Singular integrals and boundary value problems. Am. J. Math. 88, 781–809 (1966)

Seeley, R.T.: Topics in pseudo-differential operators. In: L. Nirenberg (ed.) Pseudo-Differential Operators (C.I.M.E., Stresa, 1968), pp. 167–305. Edizioni Cremonese, Roma (1969). Reprint of the first edition, Springer, Berlin (2010)

Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, no. 30, Princeton University Press, Princeton (1970)

Taira, K.: On some degenerate oblique derivative problems. J. Fac. Sci. Univ. Tokyo Sect. 23, 259–287 (1976)

Taira, K.: Semigroups, Boundary Value Problems and Markov Processes. Springer Monographs in Mathematics, 2nd edn. Springer, Berlin (2014)

Taira, K.: Analytic Semigroups and Semilinear Initial-boundary Value Problems, 2nd edn. London Mathematical Society Lecture Note Series, vol. 434. Cambridge University Press, Cambridge (2016)

Taira, K.: Spectral analysis of the subelliptic oblique derivative problem. Ark. Mat. 55, 243–270 (2017)

Taylor, M.E.: Pseudodifferential Operators. Princeton Mathematical Series, Vol. 34, Princeton University Press, Princeton (1981)

Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)