Spectral Properties of Dynamical Systems, Model Reduction and Decompositions

Springer Science and Business Media LLC - Tập 41 Số 1-3 - Trang 309-325 - 2005
Igor Mezić1
1Department of Mechanical and Environmental Engineering and Department of Mathematics, University of California, Santa Barbara, CA, 93105-5070, U.S.A

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adrover, A. and Giona, M., ‘Modal reduction of PDE models by means of snapshot archetypes’, Physica D 182, 2003, 23–45.

Akhiezer, N. I. and Glazman, I. M., Theory of Linear Operators in Hilbert Space, Vol. 1. Frederic Ungar Publishing Company, New York, 1961.

Arnold, L. and Crauel, H., ‘Random dynamical systems’, in Springer-Verlag Lecture Notes in Mathematics, Vol. 1486, 1991, pp. 1–22.

Bamieh, B. and Dahleh, M., ‘Energy amplification in channel flows with channel excitation’, Physics of Fluids 13, 2001, 3258–3269.

Berkooz, G., ‘An observation on probability density equations, or, when do simulations reproduce statistics?’, Nonlinearity 7, 1994, 313–328.

Broer, H. and Takens, F., ‘Mixed spectra and rotational symmetry’, Archives of Rational Mechanics Analysis 124, 1993, 13–42.

Butler, K. M. and Farrell, B. F., ‘Three-dimensional optimal perturbations in viscous shear flow’, Physics of Fluids A 4, 1992, 1637.

Chorin, A. J., Hald, O. H., and Kupferman, R., ‘Optimal prediction and the Mori–Zwanzig representation of irreversible processes’, in Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, 2000, pp. 2968–2973.

Dellnitz, M., Froyland, G., and Sertl, S., ‘On the isolated spectrum of the Perron–Frobenius operator’, Nonlinearity 13, 2000, 1171–1188.

Dellnitz, M. and Junge, O., ‘On the approximation of complicated dynamical behavior’, SIAM Journal on Numerical Analysis 36(2), 1999, 491–515.

Farge, M. and Schneider, K., ‘Coherent vortex simulation (cvs), a semi-deterministic turbulence model using wavelets’, Flow Turbulence and Combustion 66, 2001, 393–426.

Givon, D., Kupferman, R., and Stuart, A., Extracting Macroscopic Dynamics: Model Problems and Algorithms. Warwick University, Preprint, 2003.

Gustavsson, L. H., ‘Energy growth of three-dimensional disturbances in plane Poiseuille flow’, Journal of Fluid Mechanics 224, 1991, 241–260.

Holmes, P., Lumley, J. L., and Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, MA, 1996.

Majda, A. J., Timofeyev, I., and Eijnden, E. V., ‘Models for stochastic climate prediction’, in Proceedings of the National Academy of Sciences, Vol. 96, 1999, pp. 14687–14691.

Mane, R., Ergodic Theory and Differentiable Dynamics, Springer-Verlag, 1987.

Mezić, I. I. and Banaszuk, A., Comparison of complex systems. Physica D, 2004.

Mezić, I. I. and Wiggins, S., ‘A method for visualization of invariant sets of dynamical systems based on the ergodic partition’, Chaos 9, 1999, 213–218.

Petersen, K., Ergodic Theory, Cambridge University Press, Cambridge, MA, 1995.

Plesner, A. I., Spectral Theory of Linear Operators, Vol. 2, Frederic Ungar Publishing Company, New York, 1969.

Reddy, S. C. and Henningson, D. S., ‘Energy growth in viscous channel flows’, Journal of Fluid Mechanics 252, 1993, 209.

Reynolds, W. C. and Hussein, A. K. M. F., ‘The mechanics of an organized wave in turbulent shear flow: Part 3. Theoretical models and comparison with experiment’, Journal of Fluid Mechanics 54, 1972, 263–288.

Rokhlin, V. A., ‘Selected topics from the metric theory of dynamical systems’, American Mathematical Society Translation, Series 2 49, 1966, 171–240.

Rowley, C. W., Kevrekidis, I. G., Marsden, J. E., and Lust, K., ‘Reduction and reconstruction for self-similar dynamical systems’, Nonlinearity 16, 2003, 1257–1275.

Saravanan, R. and McWilliams, J. C., ‘Stochasticity and spatial resonance in interdecadal climate fluctuations’, Journal of Climate 10, 1997, 2299–2320.

Sinai, Ya. G., Topics in Ergodic Theory, Princeton Univerity Press, Princeton, NJ, 1994.

Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.

Trefethen, L. N., Trefethen, A. E., Reddy, S. C., and Driscoll, T. A., ‘Hydrodynamic stability without eigenvalues’, Science 261, 1993, 578.

Wiener, N. and Wintner, A., ‘Harmonic analysis and ergodic theory’, American Journal of Mathematics 63, 1940.

Yosida, K., Functional Analysis, Springer-Verlag, New York, 1980.

Young, L. S., ‘What are SRB measures, and which dynamical systems have them?’, Journal of Statistical Physics 108, 2002, 733–754.