Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature

Martin Kolb1, Tobias Weich1, Lasse L. Wolf1
1Universität Paderborn, Paderborn, Germany

Tóm tắt

The kinetic Brownian motion on the sphere bundle of a Riemannian manifold  $$\mathbb {M}$$ is a stochastic process that models a random perturbation of the geodesic flow. If $$\mathbb {M}$$ is an orientable compact constantly curved surface, we show that in the limit of infinitely large perturbation the $$L^2$$ -spectrum of the infinitesimal generator of a time-rescaled version of the process converges to the Laplace spectrum of the base manifold.

Từ khóa


Tài liệu tham khảo

Angst, J., Bailleul, I., Tardif, C.: Kinetic Brownian motion on Riemannian manifolds. Electron. J. Probab. 20, 1–40 (2015)

Arendt, W., Grabosch, A., Greiner, G., Moustakas, U., Nagel, R., Schlotterbeck, U., Groh, U., Lotz, H.P., Neubrander, F.: One-parameter semigroups of positive operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin (1986)

Bismut, J.-M.: The hypoelliptic Laplacian on the cotangent bundle. J. Am. Math. Soc. 18(2), 379–476 (2005)

Bismut, J.-M., Lebeau, G.: The hypoelliptic Laplacian and Ray-Singer metrics. AMS, vol. 167. Princeton University Press, Princeton, NJ (2008)

Baudoin, F., Tardif, C.: Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinet. Relat. Models 11(1), 1–23 (2018)

Bonthonneau, Y., Weich, T.: Ruelle resonances for manifolds with hyperbolic cusps. J. Eur. Math. Soc. (2021). https://doi.org/10.4171/JEMS/1103

Dyatlov, S., Faure, F., Guillarmou, C.: Power spectrum of the geodesic flow on hyperbolic manifolds. Anal. PDE 8(4), 923–1000 (2015)

Dyatlov, S., Guillarmou, C.: Pollicott–Ruelle resonances for open systems. Ann. Henri Poincaré 17(11), 3089–3146 (2016)

Dang, N.V., Riviere, G.: Spectral analysis of morse-smale gradient flows. Ann. Sci. ENS. 52(6), 1403–1458 (2016)

Drouot, A.: Stochastic stability of Pollicott-Ruelle resonances. Commun. Math. Phys. 356(2), 357–396 (2017)

Dyatlov, S., Zworski, M.: Dynamical zeta functions for Anosov flows via microlocal analysis. Ann. Sci. Éc. Norm. Supér. 49(3), 543–577 (2016)

Engel, K.J., Nagel, R.: One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics. Springer, New York (2006)

Flaminio, L., Forni, G.: Invariant distributions and time averages for horocycle flows. Duke Math. J. 119(3), 465–526 (2003)

Franchi, J., Le Jan, Y.: Relativistic diffusions and Schwarzschild geometry. Commun. Pure Appl. Math. 60(2), 187–251 (2007)

Faure, F., Sjöstrand, J.: Upper bound on the density of Ruelle resonances for Anosov flows. Commun. Math. Phys. 308(2), 325–364 (2011)

Guillarmou, C., Hilgert, J., Weich, T.: Classical and quantum resonances for hyperbolic surfaces. Math. Ann. 370(3), 1231–1275 (2018)

Guillarmou, C., Hilgert, J., Weich, T.: High frequency limits for invariant Ruelle densities. Ann. Henri Lebesgue 4, 81–119 (2021)

Götz, T., Klar, A., Marheineke, N., Wegener, R.: A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J. Appl. Math. 67(6), 1704–1717 (2007)

Grothaus, M., Stilgenbauer, P.: Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology. Stoch. Dyn. 13(4), 1350001 (2013)

Grothaus, M., Stilgenbauer, P.: Hypocoercivity for Kolmogorov backward evolution equations and applications. J. Funct. Anal. 267(10), 3515–3556 (2014)

Helffer, B., Nier, F.: Hypoelliptic estimates and spectral theory for Fokker–Planck operators and Witten laplacians. Lecture Notes in Mathematics, vol. 1862. Springer, New York (2005)

Kato, T.: Perturbation theory for linear operators. Grundlehren der mathematischen Wissenschaften, 2 edn. Springer, Berlin (1976)

Kolb, M., Savov, M., Wübker, A.: (Non-)ergodicity of a degenerate diffusion modeling the fiber lay down process. SIAM J. Math. Anal. 45(1), 1–13 (2013)

Küster, B., Weich, T.: Quantum-classical correspondence on associated vector bundles over locally symmetric spaces. Int. Math. Res. Notices 2021(11), 8225–8296 (2019)

Kolb, M., Weich, T., Wolf, L.L.: Spectral asymptotics for kinetic brownian motion on hyperbolic surfaces. arXiv:1909.06183 (2019)

Li, X.-M.: Random perturbation to the geodesic equation. Ann. Probab. 44(1), 544–566 (2016)

Liverani, C.: On contact Anosov flows. Ann. Math. 159(3), 1275–1312 (2004)

Paternain, G.P., Salo, M., Uhlmann, G.: Spectral rigidity and invariant distributions on anosov surfaces. J. Differ. Geom. 98(1), 147–181 (2014)

Reed, M., Simon, B.: Methods of modern mathematical physics II: Fourier analysis, self-adjointness. Academic Press, Methods of modern mathematical physics, New York (1975)

Smith, H.: Parametrix for a semiclassical subelliptic operator. Anal. PDE 13(8), 2375–2398 (2020)

Taylor, M.E.: Noncommutative Harmonic Analysis, Mathematical surveys and monographs, Providence. American Math. Soc, RI (1986)