Specificities of one-dimensional dissipative magnetohydrodynamics

P. V. Popov1,2
1Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia
2National Research Center Kurchatov Institute, Moscow, Russia

Tóm tắt

One-dimensional dynamics of a plane slab of cold (β ≪ 1) isothermal plasma accelerated by a magnetic field is studied in terms of the MHD equations with a finite constant conductivity. The passage to the limit β → 0 is analyzed in detail. It is shown that, at β = 0, the character of the solution depends substantially on the boundary condition for the electric field at the inner plasma boundary. The relationship between the boundary condition for the pressure at β > 0 and the conditions for the electric field at β = 0 is found. The stability of the solution against one-dimensional longitudinal perturbations is analyzed. It is shown that, in the limit β → 0, the stationary solution is unstable if the time during which the acoustic wave propagates across the slab is longer than the time of magnetic field diffusion. The growth rate and threshold of instability are determined, and results of numerical simulation of its nonlinear stage are presented.

Từ khóa


Tài liệu tham khảo

K. V. Chukbar, Plasma Phys. Rep. 19, 783 (1993).

D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 1103 (2000).

V. V. Aleksandrov, A. V. Branitsky, G. S. Volkov, E. V. Grabovski, M. V. Zurin, S. L. Nedoseev, G. M. Oleinik, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 27, 89 (2001).

V. V. Aleksandrov, E. V. Grabovsky, G. G. Zukakishvili, M. V. Zurin, N. N. Komarov, I. V. Krasovskii, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, I. N. Frolov, et al., JETP 97, 745 (2003).

V. V. Alexandrov, E. V. Grabovsky, M. V. Zurin, I. V. Krasovskii, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, and I. N. Frolov, JETP 99, 1150 (2004).

E. M. Waisman, M. E. Cuneo, W. A. Stygar, P. V. Sasorov, and E. P. Yu, Phys. Plasmas 13, 062702 (2006).

P. V. Sasorov, B. V. Oliver, E. P. Yu, and T. A. Mehlhorn, Phys. Plasmas 15, 022702 (2008).

M. E. Cuneo, E. M. Waisman, S. V. Lebedev, J. P. Chitteden, W. A. Stygar, G. A. Chandler, R. A. Vesey, E.P. Yu, T. J. Nash, D. E. Bliss, G. S. Sarkisov, T. C. Wagoner, G. R. Bennett, D. B. Sinars, J. L. Porter, et al., Phys. Rev. E 71, 1103 (2005).

T. W. Hussey and N. F. Roderick, Phys. Fluids 24, 1384 (1981).

S. F. Grigor’ev and S. V. Zakharov, Sov. Tech. Phys. Lett. 13, 254 (1987).

L. I. Rudakov, A. Chuvatin, A. L. Velikovich, and J. Davis, Phys. Plasmas 10, 1063 (2003).

T. W. Hussey, N. F. Roderick, and D. A. Klock, J. Appl. Phys. 51, 1452 (1980).

J. H. Hammer, J. L. Eddleman, P. T. Springer, M. Tabak, A. Toor, K. L. Wong, G. B. Zimmerman, C. Deeney, R. Humphreys, T. J. Nash, T. W. L. Sanford, R. B. Spielman, and J. S. De Groot, Phys. Plasmas 3, 2063 (1996).

S. A. Slutz, M. C. Herrmann, R. A. Vesey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, and M. E. Cuneo, Phys. Plasmas 17, 1063 (2010).

M. R. Gomez, S. A. Slutz, A. B. Sefkow, D. B. Sinars, K. D. Hahn, S. B. Hansen, E. C. Harding, P. F. Knapp, P. F. Schmit, C. A. Jennings, T. J. Awe, M. Geissel, D. C. Rovang, G. A. Chandler, G. W. Cooper, et al., Phys. Rev. Lett. 113, 1103 (2014).

F. Hamann, P. Combis, and L. Videau, Phys. Plasmas 22, 1063 (2015).

M. G. Haines, Plasma Phys. Controlled Fusion 53, 1088 (2011).

J. S. De Groot, A. Toor, S. M. Golberg, and M. A. Liberman, Phys. Plasmas 4, 737 (1997).

J. Gratton, F. T. Gratton, and A. G. Gonzalez, Plasma Phys. Controlled Fusion 30, 435 (1988).

M. A. Liberman, J. S. De Groot, A. Toor, and R. B. Spielman, Physics of High-Density Z-Pinch Plasmas (Springer-Verlag, New York, 1998).

W. E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations (Academic, New York, 1991).

E. Hairer and G. Wanner, J. Comput. Appl. Mat. 111, 93 (1999).