Specific phase modulation and infrared photon confinement in solar selective absorbers
Tài liệu tham khảo
Weinstein, 2015, Concentrating solar power, Chem. Rev., 115, 12797, 10.1021/acs.chemrev.5b00397
Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475
Kraemer, 2016, Concentrating solar thermoelectric generators with a peak efficiency of 7.4%, Nat. Energy, 1, 16153, 10.1038/nenergy.2016.153
Creutzig, 2017, The underestimated potential of solar energy to mitigate climate change, Nat. Energy, 2, 17140, 10.1038/nenergy.2017.140
Mandal, 2017, "Dip-and-Dry" fabrication of a wide-angle plasmonic selective absorber for high-efficiency solar-thermal energy conversion, Adv. Mater., 29, 10.1002/adma.201702156
Zhou, 2016, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination, Nat. Photon, 10, 393, 10.1038/nphoton.2016.75
Ni, 2018, A salt-rejecting floating solar still for low-cost desalination, Energy Environ. Sci., 11, 1510, 10.1039/C8EE00220G
Zhou, 2016, Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation, Sci. Adv., 2, 10.1126/sciadv.1501227
Wang, 2017, High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles, Adv. Mater., 29
Ren, 2017, Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion, Adv. Mater., 29, 10.1002/adma.201702590
Yang, 2017, Dually ordered porous TiO2-rGO composites with controllable light absorption properties for efficient solar energy conversion, Adv. Mater., 29
Li, 2018, Three-dimensional artificial transpiration for efficient solar waste-water treatment, Sci. Rev., 5, 70
Panchal, 2018, Solar energy utilisation for milk pasteurisation: a comprehensive review, Renew. Sust. Energ. Rev., 92, 1, 10.1016/j.rser.2018.04.068
Cui, 2014, Plasmonic and metamaterial structures as electromagnetic absorbers, Laser Photon. Rev., 8, 495, 10.1002/lpor.201400026
Huang, 2016, Harnessing structural darkness in the visible and infrared wavelengths for a new source of light, Nat. Nanotechnol., 11, 60, 10.1038/nnano.2015.228
Selvakumar, 2014, Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber, Adv. Mater., 26, 2552, 10.1002/adma.201305070
Cao, 2014, A review of cermet-based spectrally selective solar absorbers, Energy Environ. Sci., 7, 1615, 10.1039/c3ee43825b
Dan, 2017, Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: a critical review, Renew. Sust. Energ. Rev., 79, 1050, 10.1016/j.rser.2017.05.062
Selvakumar, 2012, Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications, Sol. Energy Mater. Sol. Cells, 98, 1, 10.1016/j.solmat.2011.10.028
Shah, 2013, Spectral selective surfaces for concentrated solar power receivers by laser sintering of tungsten micro and nano particles, Sol. Energy Mater. Sol. Cells, 117, 489, 10.1016/j.solmat.2013.07.013
Rodríguez-Palomo, 2018, High-temperature air-stable solar selective coating based on MoSi2–Si3N4 composite, Sol. Energy Mater. Sol. Cells, 174, 50, 10.1016/j.solmat.2017.08.021
Céspedes, 2018, Role of Al2O3 antireflective layer on the exceptional durability of Mo–Si–N-Based spectrally selective coatings in air at high temperature, ACS Appl. Energy Mater., 1, 6152, 10.1021/acsaem.8b01183
Cardy, 2010, The ubiquitous ‘c’: from the Stefan–boltzmann law to quantum information, J. Stat. Mech., 10, P10004, 10.1088/1742-5468/2010/10/P10004
Hedayati, 2011, Design of a perfect black absorber at visible frequencies using plasmonic metamaterials, Adv. Mater., 23, 5410, 10.1002/adma.201102646
Etrich, 2014, Effective optical properties of plasmonic nanocomposites, Materials, 7, 727, 10.3390/ma7020727
Cao, 2015, Enhanced thermal stability of W-Ni-Al2O3 cermet-based spectrally selective solar absorbers with tungsten infrared reflectors, Adv. Energy Mater., 5, 10.1002/aenm.201401042
Wang, 2017, High-temperature tolerance in WTi-Al2O3 cermet-based solar selective absorbing coatings with low thermal emissivity, Nano Energy, 37, 232, 10.1016/j.nanoen.2017.05.036
Dyachenko, 2016, Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions, Nat. Commun., 7, 11809, 10.1038/ncomms11809
Wang, 2018, Self-doped W–WOx nanocermet multilayer films fabricated by single tungsten target reactive sputtering for selective solar absorption, J. Mater. Chem. A, 6, 15690, 10.1039/C8TA05231J
Zhang, 1992, New cermet film structures with much improved selectivity for solar thermal applications, Appl. Phys. Lett., 60, 545, 10.1063/1.106602
Zhang, 1992, Very low‐emittance solar selective surfaces using new film structures, J. Appl. Phys., 72, 3013, 10.1063/1.351510
Okuhara, 2018, High-temperature solar-thermal conversion by semiconducting β- FeSi2 absorbers with thermally stabilized silver layers, Sol. Energy Mater. Sol. Cells, 174, 351, 10.1016/j.solmat.2017.09.023
Hernández-Pinilla, 2016, MoSi2–Si3N4 absorber for high temperature solar selective coating, Sol. Energy Mater. Sol. Cells, 152, 141, 10.1016/j.solmat.2016.04.001
Cao, 2015, A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability, Energy Environ. Sci., 8, 3040, 10.1039/C5EE02066B
Wang, 2018, Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems, J. Appl. Phys., 123
Gao, 2016, Plasmonic AgAl bimetallic alloy Nanoparticle/Al2O3 nanocermet thin films with robust thermal stability for solar thermal applications, Adv. Mater. Interfaces, 3, 10.1002/admi.201600248
Wang, 2019, On‐demand preparation of α‐Phase‐Dominated tungsten films for highly qualified thermal reflectors, Adv. Mater. Interfaces, 6
Vüllers, 2015, Alpha- vs. beta-W nanocrystalline thin films: a comprehensive study of sputter parameters and resulting materials’ properties, Thin Solid Films, 577, 26, 10.1016/j.tsf.2015.01.030
Ning, 2016, Investigation on low thermal emittance of Al films deposited by magnetron sputtering, Infrared Phys. Technol., 75, 133, 10.1016/j.infrared.2016.01.007
Antonaia, 2010, Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature, Sol. Energy Mater. Sol. Cells, 94, 1604, 10.1016/j.solmat.2010.04.080
Al-Rjoub, 2019, CrAlSiN barrier layer to improve the thermal stability of W/CrAlSiNx/CrAlSiOyNx/SiAlOx solar thermal absorber, Sol. Energy Mater. Sol. Cells, 191, 235, 10.1016/j.solmat.2018.11.023
Chester, 2011, Design and global optimization of high-efficiency solar thermal systems with tungsten cermets, Opt. Express, 19, A245, 10.1364/OE.19.00A245
Zhang, 2001, Optimizing analysis of W-AlN cermet solar absorbing coatings, J. Phys. D Appl. Phys., 34, 3113, 10.1088/0022-3727/34/21/303
Posselt, 2017, Restructuring in block copolymer thin films: in situ GISAXS investigations during solvent vapor annealing, Prog. Polym. Sci., 66, 80, 10.1016/j.progpolymsci.2016.09.009
Gong, 2016, Morphology of Fe nanolayers with Pt overlayers on low-temperature annealing, J. Appl. Crystallogr., 49, 1682, 10.1107/S1600576716011882
Narayanan, 2005, Real-time evolution of the distribution of nanoparticles in an ultrathin-polymer-film-based waveguide, Phys. Rev. Lett., 94, 10.1103/PhysRevLett.94.145504
Müller-Buschbaum, 2009, A basic introduction to grazing incidence small-angle X-ray scattering, Lect. Notes Phys., 776, 61, 10.1007/978-3-540-95968-7_3
Chookajorn, 2012, Design of stable nanocrystalline alloys, Science, 337, 951, 10.1126/science.1224737