Specific phase modulation and infrared photon confinement in solar selective absorbers

Applied Materials Today - Tập 18 - Trang 100533 - 2020
Xiaoyu Wang1,2, Haibo Hu1,2, Xiaoyun Li3, Junhua Gao1,2, Zhenyu Wang4, Lingyan Liang1,2, Hongliang Zhang1,2, Fei Zhuge1,2, Hongtao Cao1,2
1Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing, 100049, China
3Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
4Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China

Tài liệu tham khảo

Weinstein, 2015, Concentrating solar power, Chem. Rev., 115, 12797, 10.1021/acs.chemrev.5b00397 Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475 Kraemer, 2016, Concentrating solar thermoelectric generators with a peak efficiency of 7.4%, Nat. Energy, 1, 16153, 10.1038/nenergy.2016.153 Creutzig, 2017, The underestimated potential of solar energy to mitigate climate change, Nat. Energy, 2, 17140, 10.1038/nenergy.2017.140 Mandal, 2017, "Dip-and-Dry" fabrication of a wide-angle plasmonic selective absorber for high-efficiency solar-thermal energy conversion, Adv. Mater., 29, 10.1002/adma.201702156 Zhou, 2016, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination, Nat. Photon, 10, 393, 10.1038/nphoton.2016.75 Ni, 2018, A salt-rejecting floating solar still for low-cost desalination, Energy Environ. Sci., 11, 1510, 10.1039/C8EE00220G Zhou, 2016, Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation, Sci. Adv., 2, 10.1126/sciadv.1501227 Wang, 2017, High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles, Adv. Mater., 29 Ren, 2017, Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion, Adv. Mater., 29, 10.1002/adma.201702590 Yang, 2017, Dually ordered porous TiO2-rGO composites with controllable light absorption properties for efficient solar energy conversion, Adv. Mater., 29 Li, 2018, Three-dimensional artificial transpiration for efficient solar waste-water treatment, Sci. Rev., 5, 70 Panchal, 2018, Solar energy utilisation for milk pasteurisation: a comprehensive review, Renew. Sust. Energ. Rev., 92, 1, 10.1016/j.rser.2018.04.068 Cui, 2014, Plasmonic and metamaterial structures as electromagnetic absorbers, Laser Photon. Rev., 8, 495, 10.1002/lpor.201400026 Huang, 2016, Harnessing structural darkness in the visible and infrared wavelengths for a new source of light, Nat. Nanotechnol., 11, 60, 10.1038/nnano.2015.228 Selvakumar, 2014, Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber, Adv. Mater., 26, 2552, 10.1002/adma.201305070 Cao, 2014, A review of cermet-based spectrally selective solar absorbers, Energy Environ. Sci., 7, 1615, 10.1039/c3ee43825b Dan, 2017, Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: a critical review, Renew. Sust. Energ. Rev., 79, 1050, 10.1016/j.rser.2017.05.062 Selvakumar, 2012, Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications, Sol. Energy Mater. Sol. Cells, 98, 1, 10.1016/j.solmat.2011.10.028 Shah, 2013, Spectral selective surfaces for concentrated solar power receivers by laser sintering of tungsten micro and nano particles, Sol. Energy Mater. Sol. Cells, 117, 489, 10.1016/j.solmat.2013.07.013 Rodríguez-Palomo, 2018, High-temperature air-stable solar selective coating based on MoSi2–Si3N4 composite, Sol. Energy Mater. Sol. Cells, 174, 50, 10.1016/j.solmat.2017.08.021 Céspedes, 2018, Role of Al2O3 antireflective layer on the exceptional durability of Mo–Si–N-Based spectrally selective coatings in air at high temperature, ACS Appl. Energy Mater., 1, 6152, 10.1021/acsaem.8b01183 Cardy, 2010, The ubiquitous ‘c’: from the Stefan–boltzmann law to quantum information, J. Stat. Mech., 10, P10004, 10.1088/1742-5468/2010/10/P10004 Hedayati, 2011, Design of a perfect black absorber at visible frequencies using plasmonic metamaterials, Adv. Mater., 23, 5410, 10.1002/adma.201102646 Etrich, 2014, Effective optical properties of plasmonic nanocomposites, Materials, 7, 727, 10.3390/ma7020727 Cao, 2015, Enhanced thermal stability of W-Ni-Al2O3 cermet-based spectrally selective solar absorbers with tungsten infrared reflectors, Adv. Energy Mater., 5, 10.1002/aenm.201401042 Wang, 2017, High-temperature tolerance in WTi-Al2O3 cermet-based solar selective absorbing coatings with low thermal emissivity, Nano Energy, 37, 232, 10.1016/j.nanoen.2017.05.036 Dyachenko, 2016, Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions, Nat. Commun., 7, 11809, 10.1038/ncomms11809 Wang, 2018, Self-doped W–WOx nanocermet multilayer films fabricated by single tungsten target reactive sputtering for selective solar absorption, J. Mater. Chem. A, 6, 15690, 10.1039/C8TA05231J Zhang, 1992, New cermet film structures with much improved selectivity for solar thermal applications, Appl. Phys. Lett., 60, 545, 10.1063/1.106602 Zhang, 1992, Very low‐emittance solar selective surfaces using new film structures, J. Appl. Phys., 72, 3013, 10.1063/1.351510 Okuhara, 2018, High-temperature solar-thermal conversion by semiconducting β- FeSi2 absorbers with thermally stabilized silver layers, Sol. Energy Mater. Sol. Cells, 174, 351, 10.1016/j.solmat.2017.09.023 Hernández-Pinilla, 2016, MoSi2–Si3N4 absorber for high temperature solar selective coating, Sol. Energy Mater. Sol. Cells, 152, 141, 10.1016/j.solmat.2016.04.001 Cao, 2015, A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability, Energy Environ. Sci., 8, 3040, 10.1039/C5EE02066B Wang, 2018, Design and optimization of nanoparticle-pigmented solar selective absorber coatings for high-temperature concentrating solar thermal systems, J. Appl. Phys., 123 Gao, 2016, Plasmonic AgAl bimetallic alloy Nanoparticle/Al2O3 nanocermet thin films with robust thermal stability for solar thermal applications, Adv. Mater. Interfaces, 3, 10.1002/admi.201600248 Wang, 2019, On‐demand preparation of α‐Phase‐Dominated tungsten films for highly qualified thermal reflectors, Adv. Mater. Interfaces, 6 Vüllers, 2015, Alpha- vs. beta-W nanocrystalline thin films: a comprehensive study of sputter parameters and resulting materials’ properties, Thin Solid Films, 577, 26, 10.1016/j.tsf.2015.01.030 Ning, 2016, Investigation on low thermal emittance of Al films deposited by magnetron sputtering, Infrared Phys. Technol., 75, 133, 10.1016/j.infrared.2016.01.007 Antonaia, 2010, Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature, Sol. Energy Mater. Sol. Cells, 94, 1604, 10.1016/j.solmat.2010.04.080 Al-Rjoub, 2019, CrAlSiN barrier layer to improve the thermal stability of W/CrAlSiNx/CrAlSiOyNx/SiAlOx solar thermal absorber, Sol. Energy Mater. Sol. Cells, 191, 235, 10.1016/j.solmat.2018.11.023 Chester, 2011, Design and global optimization of high-efficiency solar thermal systems with tungsten cermets, Opt. Express, 19, A245, 10.1364/OE.19.00A245 Zhang, 2001, Optimizing analysis of W-AlN cermet solar absorbing coatings, J. Phys. D Appl. Phys., 34, 3113, 10.1088/0022-3727/34/21/303 Posselt, 2017, Restructuring in block copolymer thin films: in situ GISAXS investigations during solvent vapor annealing, Prog. Polym. Sci., 66, 80, 10.1016/j.progpolymsci.2016.09.009 Gong, 2016, Morphology of Fe nanolayers with Pt overlayers on low-temperature annealing, J. Appl. Crystallogr., 49, 1682, 10.1107/S1600576716011882 Narayanan, 2005, Real-time evolution of the distribution of nanoparticles in an ultrathin-polymer-film-based waveguide, Phys. Rev. Lett., 94, 10.1103/PhysRevLett.94.145504 Müller-Buschbaum, 2009, A basic introduction to grazing incidence small-angle X-ray scattering, Lect. Notes Phys., 776, 61, 10.1007/978-3-540-95968-7_3 Chookajorn, 2012, Design of stable nanocrystalline alloys, Science, 337, 951, 10.1126/science.1224737