Specific features of the copolymerization of acrylonitrile and acrylamide in the presence of low-molecular-mass and polymeric trithiocarbonates and properties of the obtained copolymers
Tóm tắt
Regularities of the formation of acrylonitrile-acrylamide copolymers obtained from initial monomer feeds containing 1–50 wt % acrylamide in DMSO solutions with the participation of low-molecular-mass and polymeric trithiocarbonates as reversible addition-fragmentation chain transfer agents are studied for the first time. It is shown that the copolymerization in the presence of low-molecular-mass trithiocarbonates proceeds via a pseudo-living mechanism. The synthesized copolymers prove to be inefficient as reversible addition-fragmentation chain transfer agents, a result that leads to products with bimodal molecular-mass distributions. The rheological characteristics of solutions, as well as the thermal behavior of the copolymers obtained in the absence and in the presence of reversible addition-fragmentation chain transfer agents, are studied. The effect of the synthesis conditions on the properties of the synthesized copolymers is discussed.
Tài liệu tham khảo
P. Morgan, Carbon Fibers and their Composites (Taylor and Francis, New York, 2005).
S. H. Bahrami, P. Bajaj, and K. Sen, J. Appl. Polym. Sci. 88, 685 (2003).
J. J. Liu, H. Y. Ge, and C. G. Wang, J. Appl. Polym. Sci. 102(3), 2175 (2006).
G. T. Sivy and M. M. Coleman, Carbon 19(2), 127 (1981).
J. Ferguson and R. N. Debanath, Fibre Sci. Technol 13, 167 (1980).
V. A. Bhanu, P. Rangarajan, K. Wiles, et al., Polymer 43(18), 4841 (2002).
A. K. Gupta, D. K. Paliwal, and P. Bajaj, J. Appl. Polym. Sci. 58(7), 1161 (1995).
M. M. Coleman, G. T. Sivy, P. C. Painter, et al., Carbon 21(3), 255 (1983).
X. Wu, C. Lu, G. Wu, et al., Fibers Polym. 6(2), 103 (2005).
Handbook of RAFT Polymerization, Ed. by C. BarnerKowollik (Wiley-VCH, Weinheim, 2008).
G. Moad, E. Rizzardo, and S. H. Thang, Polymer 49(5), 1079 (2008).
Controlled/Living Radical Polymerization: From Synthesis to Materials, Ed. by A. H. E. Muller and K. Matyjaszewski (Wiley-VCH, Weinheim, 2009).
E. V. Chernikova, Z. A. Poteryaeva, S. S. Belyaev, et al., Polym. Sci., Ser. B 53(7–8), 391 (2011).
E. V. Chernikova, Z. A. Poteryaeva, S. S. Belyaev, and E. V. Sivtsov, J. Appl. Chem. 84(6), 1031 (2011).
E. V. Chernikova, Z. A. Poteryaeva, A. V. Shlyahtin, et al., Polym. Sci, Ser. B 55(1–2), 1 (2013).
A. Li, Y. Wang, H. Liang, and J. Lu, J. Polym. Sci., Part A: Polym. Chem. 44(8), 2376 (2006).
L. S. Wan, H. Lei, Y. Ding, et al., J. Polym. Sci., Part A: Polym. Chem. 47(1), 92 (2009).
J. Božović-Vukić, H. T. Manon, J. Meuldijk, et al., Macromolecules 40(20), 7132 (2007).
C. J. Durr, J. S. G. Emmerling, A. Kaiser, et al., J. Polym. Sci., Part A: Polym. Chem. 50(1), 174 (2012).
E. V. Chernikova, Z. A. Poteryaeva, and A. V. Plutalova, Polym. Sci., Ser. B 56(1–2), 109 (2014).
A. A. Baskakov, J. V. Kostina, and E. V. Chernikova, Butlerov Commun. 35(8), 42 (2013).
G. T. Sivy and M. M. Coleman, Carbon 19(2), 137 (1981).
G. T. Sivy, B. Gordon, and M. M. Coleman, Carbon 21(6), 573 (1983).
X. P. Wu, C. Y. Lu, G. P. Wu, et al., Polym. Mater. Sci. Eng. 21(1), 132 (2005).
X. P. Wu, Y. G. Yang, L. C. Ling, et al., New Carbon Mater. 18(1), 196 (2003).
D. B. Thomas, A. J. Convertine, L. J. Myrick, et al., Macromolecules 37(24), 8941 (2004).
D. B. Thomas, B. S. Sumerlin, A. B. Lowe, and C. L. McCormick, Macromolecules 36(5), 1436 (2003).
Polymer Handbook, Ed. by J. Brandrup, E. H. Immergut, and E. A. Crulue (Wiley, New York, 1999).
J. Dechant, R. Danz, W. Kimmer, and R. Schmolke, Ultrarotspektroskopische Untersuchungen an Polymeren (Akademie, Berlin, 1972).
Encyclopedia of Polymer Science and Technology, Ed. by J. I. Kroschwitz (Wiley, Hoboken, 2003).
N. Han, X. X. Zhang, and X. C. Wang, Iran. Polym. J. 19(4), 243 (2010).
N. Han, X. X. Zhang, and X. C. Wang, J. Appl. Polym. Sci. 103(5), 2776 (2007).
J. Sun, K. T. Wang, J. J. Wang, et al., Adv. Mater. Res. 175–176, 164 (2011).