Khóa đặc hiệu Protein Morphogenetic xương-2/4 Kích thích Oligodendrogenesis và Remyelination trong các Rối loạn Demyelinating

Elsevier BV - Tập 18 - Trang 1798-1814 - 2021
Karin Mausner-Fainberg1, Moshe Benhamou1,2, Maya Golan1, Nadav Bleich Kimelman3, Uri Danon3, Ehud Marom3, Arnon Karni1,2,4
1Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
2Sackler’s Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
3Stem Cell Medicine Ltd, Jerusalem, Israel
4Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel

Tóm tắt

Các tế bào tiền thân oligodendrocyte (OPC) có mặt trong các tổn thương không myelin hóa ở bệnh nhân đa xơ cứng (MS). Tuy nhiên, sự phân hóa của chúng thành oligodendrocyte chức năng là không đủ, và hầu hết các tổn thương tiến triển thành sẹo astroglial không chức năng. Khóa tín hiệu protein morphogenetic xương (BMP) kích thích sự phân hóa của OPC thành oligodendrocyte sản xuất myelin. Chúng tôi đã nghiên cứu tác động của việc khóa cụ thể tín hiệu BMP-2/4, thông qua điều trị tĩnh mạch (IV) với kháng thể trung hòa anti-BMP-2/4 trong cả mô hình viêm của bệnh viêm não tự miễn tái phát (R-EAE) và mô hình độc tính cuprizone gây ra mất myelin ở chuột. Việc tiêm anti-BMP-2/4 vào chuột R-EAE, vào ngày thứ 9 sau khi tiêm chủng (p.i.), đã cải thiện các dấu hiệu của R-EAE, giảm sự biểu hiện của phospho-SMAD1/5/8, chủ yếu trong dòng tế bào astrocyte, tăng số lượng oligodendrocyte chưa trưởng thành và trưởng thành mới, và giảm số lượng astrocyte mới hình thành trong tủy sống ngay từ ngày 18 p.i. Tác động này được đi kèm với gia tăng remyelination, được biểu hiện bởi tăng mật độ của các sợi trục đang remyelinating (0.8 < g-ratio < 1), và giảm số lượng sợi trục bị demyelinated hoàn toàn và đang demyelinating, ở chuột R-EAE được điều trị bằng anti-BMP-2/4, được nghiên cứu bằng kính hiển vi điện tử. Không có tác dụng ức chế miễn dịch đáng kể nào được quan sát trong hệ thần kinh trung ương (CNS) và ngoại vi, trong thời điểm cao điểm của cuộc tấn công đầu tiên hoặc vào cuối thí nghiệm. Hơn nữa, điều trị tĩnh mạch bằng kháng thể anti-BMP-2/4 ở chuột thí nghiệm với cuprizone đã tăng số lượng oligodendrocyte trưởng thành và remyelination trong thể callosum trong giai đoạn phục hồi của bệnh. Dựa trên các phát hiện của chúng tôi, việc khóa đặc hiệu BMP-2/4 có tiềm năng điều trị trong các rối loạn demyelinating như MS, thông qua việc kích thích remyelination trung gian bởi oligodendrogenesis trong các mô bị ảnh hưởng.

Từ khóa

#Oligodendrocyte precursor cells #demyelination #BMP signaling #remyelination #multiple sclerosis

Tài liệu tham khảo

Barnett MH, Prineas JW. Relapsing and Remitting Multiple Sclerosis: Pathology of the Newly Forming Lesion. Ann Neurol. 2004; 5: 458-68. Prat A, Antel J. Pathogenesis of multiple sclerosis. Curr Opin Neurol. 2005;18: 225-230. Matute C, Pérez-Cerdá F. Multiple sclerosis: Novel perspectives on newly forming lesions. Trends Neurosci. 2005; 28: 173-175. Frohman EM, Racke MK, Raine CS. Multiple Sclerosis — The Plaque and Its Pathogenesis. N Engl J Med. 2006; 354: 942–955. Trapp BD, Nave K-A. Multiple Sclerosis: An Immune or Neurodegenerative Disorder? Annu Rev Neurosci. 2008; 31: 247–269. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015; 15: 545-558. Stankoff B, Jadasz JJ, Hartung H-P, et al. Repair strategies for multiple sclerosis: challenges, achievements and perspectives. Curr Opin Neurol. 2016; 29: 286–292. Kornek B, Storch MK, Weissert R, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. 2000; 157: 267–276. Irvine KA, Blakemore WF. Remyelination protects axons from demyelination-associated axon degeneration. Brain. 2008; 131: 1464–1477. Bruce CC, Zhao C, Franklin RJM. Remyelination - An effective means of neuroprotection. Horm Behav. 2010; 57: 56–62. Wolswijk G. Chronic Stage Multiple Sclerosis Lesions Contain a Relatively Quiescent Population of Oligodendrocyte Precursor Cells. J Neurosci. 1998; 18: 601-9. Lucchinetti C, Bruck W, Parisi J, et al. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain. 1999; 122 (Pt 12): 2279–2295. Maeda Y, Solanky M, Menonna J, et al. Platelet-derived growth factor-alpha receptor-positive oligodendroglia are frequent in multiple sclerosis lesions. Ann Neurol. 2001; 49: 776–785. Chang A, Tourtellotte WW, Rudick R, et al. Premyelinating Oligodendrocytes in Chronic Lesions of Multiple Sclerosis. N Engl J Med. 2002; 346: 165-73. Nait-Oumesmar B, Picard-Riera N, Kerninon C, et al. Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci U S A. 2007;104:4694–4699. Snethen H, Love S, Scolding NJ. Disease-responsive neural precursor cells are present in multiple sclerosis lesions. Regen Med. 2008; 3: 835-47. Nait-Oumesmar B, Decker L, Lachapelle F, et al. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci. 1999; 11: 4357–4366. Aguirre A, Dupree JL, Mangin JM, et al. A functional role for EGFR signaling in myelination and remyelination. Nat Neurosci. 2007; 10: 990–1002. Patel JR, McCandless EE, Dorsey D, et al. CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci U S A. 2010; 107: 11062–11067. Samanta J, Grund EM, Silva HM, et al. Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination. Nature. 2015; 526: 448–452. Mi S, Lee X, Hu Y, et al. Death receptor 6 negatively regulates oligodendrocyte survival, maturation and myelination. Nat Med. 2011; 17: 816–821. Perier O, Gregoire A. Electron microscopic features of multiple sclerosis lesions. Brain. 1965; 88: 937–952. Prineas JW, Connell F. Remyelination in multiple sclerosis. Ann Neurol. 1979; 5: 22–31. Raine CS, Wu E. Multiple sclerosis: remyelination in acute lesions. J Neuropathol Exp Neurol. 1993; 52: 199–204. Patrikios P, Stadelmann C, Kutzelnigg A, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006; 129: 3165–3172. Patani R, Balaratnam M, Vora A, et al. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol. 2007; 33: 277-87. Kotter MR, Li W-W, Zhao C, et al. Myelin Impairs CNS Remyelination by Inhibiting Oligodendrocyte Precursor Cell Differentiation. J Neurosci. 2006; 26: 328–332. Miller RH, Mi S. Dissecting demyelination. Nat Neurosci. 2007; 10: 1351–1354. Piaton G, Aigrot M-S, Williams A, et al. Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system. Brain. 2011; 134: 1156–1167. Kuhlmann T, Miron V, Cuo Q, et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain. 2008; 131(Pt 7):1749-58. Lucchinetti CF, Bruck W, Rodriguez M, et al. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol. 1996; 6: 259–274. Correale J, Farez MF. The role of astrocytes in multiple sclerosis progression. Front Neurol. 2015; 6: 1–12. Gross RE, Mehler MF, Mabie PC, et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron. 1996; 17: 595-606. Mabie PC, Mehler MF, Marmur R, et al. Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial-astroglial progenitor cells. J Neurosci. 1997; 17: 4112-20. Grinspan J, Edell E, Carpio DF, et al. Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. J Neurobiol. 2000; 43: 1–17. Lim DA, Tramontin AD, Trevejo JM, et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000; 28: 713-26. Gomes WA, Mehler MF, Kessler JA. Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol. 2003; 255: 167-7. Colak D, Mori T, Brill MS, et al. Adult Neurogenesis Requires Smad4-Mediated Bone Morphogenic Protein Signaling in Stem Cells. J Neurosci. 2008; 28: 434–446. Sabo JK, Kilpatrick TJ, Cate HS. Effects of Bone Morphogenic Proteins on Neural Precursor Cells and Regulation during Central Nervous System Injury. Neurosignals. 2009; 17: 255–264. Sabo JK, Aumann TD, Merlo D, et al. Remyelination Is Altered by Bone Morphogenic Protein Signaling in Demyelinated Lesions. J Neurosci. 2011; 31: 4504-10. Cate HS, Sabo JK, Merlo D, et al. Modulation of bone morphogenic protein signalling alters numbers of astrocytes and oligodendroglia in the subventricular zone during cuprizone-induced demyelination. J Neurochem. 2010; 115: 11-22. Jablonska B, Aguirre A, Raymond M, et al. Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nat Neurosci. 2010; 13: 541–550. Zhao C, Fancy SPJ, Magy L, et al. Stem cells, progenitors and myelin repair. J. Anat. 2005; 207: 251-8. Fuller ML, DeChant AK, Rothstein B, et al. Bone morphogenetic proteins promote gliosis in demyelinating spinal cord lesions. Ann Neurol. 2007; 62: 288-300. Ara J, See J, Mamontov P, et al. Bone Morphogenetic Proteins 4, 6, and 7 Are Up-Regulated in Mouse Spinal Cord during Experimental Autoimmune Encephalomyelitis. J Neurosci Res 2008; 86: 125-35. Deininger M, Meyermann R, Schluesener H. Detection of two transforming growth factor-$β$-related morphogens, bone morphogenetic proteins-4 and-5, in RNA of multiple sclerosis and Creutzfeldt-Jakob disease lesions. Acta Neuropathol. 1995; 90: 76–79. Costa C, Eixarch H, Martínez-Sáez E, et al. Expression of Bone Morphogenetic Proteins in Multiple Sclerosis Lesions. Am J Pathol. 2019; 189: 665–676. Mausner-Fainberg K, Urshansky N, Regev K, et al. Elevated and dysregulated bone morphogenic proteins in immune cells of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol. 2013; 264: 91-99. Urshansky N, Mausner-Fainberg K, Auriel E, et al. Reduced production of noggin by immune cells of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol. 2011; 232: 171-178. Urshansky N, Mausner-Fainberg K, Auriel E, et al. Low and dysregulated production of follistatin in immune cells of relapsing-remitting multiple sclerosis patients. J Neuroimmunol. 2011; 238: 96-103. Penn M, Mausner-Fainberg K, Golan M, et al. High serum levels of BMP-2 correlate with BMP-4 and BMP-5 levels and induce reduced neuronal phenotype in patients with relapsing-remitting multiple sclerosis. J Neuroimmunol. 2017; 310: 120-128. Cheng X, Wang Y, He Q, et al. Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells. Stem Cells. 2007; 25: 3204–3214. Aspenberg P, Jeppsson C, Economides AN. The Bone Morphogenetic Proteins Antagonist Noggin Inhibits Membranous Ossification. J Bone Miner Res. 2001; 16: 497–500. Groppe J, Greenwald J, Wiater E, et al. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature. 2002; 420: 636–642. Yang J, Shi P, Tu M, et al. Bone morphogenetic proteins: Relationship between molecular structure and their osteogenic activity. Food Sci Hum Wellness. 2014; 3: 127-135. Weil M-T, Mobius W, Winkler A, et al. Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models of Demyelinating Diseases. Cell Rep. 2016; 16: 314–322. Pino PA, Cardona AE. Isolation of brain and spinal cord mononuclear cells using percoll gradients. J Vis Exp. 2011; 48: 2348. Bani-Yaghoub M, Felker JM, Sans C, et al. The Effects of Bone Morphogenetic Protein 2 and 4 (BMP2 and BMP4) on Gap Junctions during Neurodevelopment. Exp Neurol. 2000; 162: 13–26. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998; 67: 753–791. Fu Y, Frederick TJ, Huff TB, et al. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy. J Biomed Opt. 2011; 16: 106006. Mei F, Lehmann-Horn K, Shen Y-AA, et al. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. Elife. 2016; 5: e18246. Kipp M, Clarner T, Dang J, et al. The cuprizone animal model: New insights into an old story. Acta Neuropathol. 2009; 118: 723–736. Costa C, Eixarch H, Martinez-Saez E, et al. Expression of Bone Morphogenetic Proteins in Multiple Sclerosis Lesions. Am J Pathol. 2018; 189: 665-676. Teresa C, Rosa S, Carmen H-L, et al. Bone morphogenetic protein-2/4 signalling pathway components are expressed in the human thymus and inhibit early T-cell development. Immunology. 2007; 121: 94–104. Samanta J, Alden T, Gobeske K, et al. Noggin Protects against Ischemic Brain Injury in Rodents. Stroke. 2010; 41: 357-362. Shunmei C, Mook LY, Wenbo Z, et al. Noggin Enhances Dopamine Neuron Production from Human Embryonic Stem Cells and Improves Behavioral Outcome After Transplantation into Parkinsonian Rats. Stem Cells. 2008; 26: 2810–2820. Tang J, Song M, Wang Y, et al. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer’s disease. Biochem Biophys Res Commun. 2009; 385: 341–345. Eixarch H, Calvo-Barreiro L, Costa C, et al. Inhibition of the BMP Signaling Pathway Ameliorated Established Clinical Symptoms of Experimental Autoimmune Encephalomyelitis. Neurotherapeutics 2020; 17: 1988-2003. Merino R, Macias D, Gañan Y, et al. Expression and Function of GDF-5 during Digit Skeletogenesis in the Embryonic Chick Leg Bud. Dev Biol. 1999; 206: 33–45. Chang C, Hemmati-Brivanlou A. Xenopus GDF6, a new antagonist of noggin and a partner of BMPs. Development. 1999; 126: 3347–3357. Tonra JR, Reiseter BS, Kolbeck R, et al. Comparison of the timing of acute blood-brain barrier breakdown to rabbit immunoglobulin G in the cerebellum and spinal cord of mice with experimental autoimmune encephalomyelitis. J Comp Neurol. 2001; 430: 131–144. Berghoff SA, Duking T, Spieth L, et al. Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model. Acta Neuropathol Commun. 2017; 5: 94. Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 2013; 12: 554–562. Carpanini SM, Torvell M, Morgan BP. Therapeutic Inhibition of the Complement System in Diseases of the Central Nervous System. Front Immunol. 2019;10:362. Du C, Duan Y, Wei W, et al. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun. 2016; 7: 11120. Shin JA, Kim YA, Kim HW, et al. Iron released from reactive microglia by noggin improves myelin repair in the ischemic brain. Neuropharmacology. 2018; 133: 202–215. Eixarch H, Calvo-Barreiro L, Montalban X, et al. Bone morphogenetic proteins in multiple sclerosis: Role in neuroinflammation. Brain Behav Immun. 2018; 68: 1–10. Kuczma M, Kurczewska A, Kraj P. Modulation of Bone Morphogenic Protein Signaling in T-Cells for Cancer Immunotherapy. J Immunotoxicol. 2014; 11: 319–327. Ling L, Jilin M, Xuehao W, et al. Synergistic effect of TGF-β superfamily members on the induction of Foxp3+ Treg. Eur J Immunol. 2009; 40: 142–152. Yumiko Y, Masahiro O, Motonao O, et al. Differential effects of inhibition of bone morphogenic protein (BMP) signalling on T-cell activation and differentiation. Eur J Immunol. 2012; 42: 749–759. Martínez VG, Sacedón R, Hidalgo L, et al. The BMP Pathway Participates in Human Naive CD4(+) T Cell Activation and Homeostasis. Houtman JCD, editor. PLoS One. 2015; 10: e0131453. Takai S, Tokuda H, Matsushima-Nishiwaki R, et al. TGF-beta superfamily enhances the antigen-induced IFN-gamma production by effector/memory CD8+ T cells. Int. J. Mol. Med. 2010; 25: 105-11. Lee GT, Kwon SJ, Lee J-H, et al. Induction of interleukin-6 expression by bone morphogenetic protein-6 in macrophages requires both SMAD and p38 signaling pathways. J Biol Chem. 2010; 285: 39401–39408. Hong JH, Lee GT, Lee JH, et al. Effect of bone morphogenetic protein-6 on macrophages. Immunology. 2009; 128: e442-50. Kwon SJ, Lee GT, Lee J-H, et al. Bone morphogenetic protein-6 induces the expression of inducible nitric oxide synthase in macrophages. Immunology. 2009; 128: e758-65. Rocher C, Singla DK. SMAD-PI3K-Akt-mTOR pathway mediates BMP-7 polarization of monocytes into M2 macrophages. PLoS One. 2013; 8: e84009. Yasmin N, Bauer T, Modak M, et al. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J Exp Med. 2013/11/04. 2013; 210: 2597–2610.