Species diversity of different insect families trapped under beer-based volatile fermentation
Tóm tắt
Insect species composition is an important phenomenon playing a significant role in the ecosystem. Chemical control of insects and pests releases toxic materials to the environment. These chemicals are dangerous to human populations. In this situation, there is a dire need to develop strategies to overcome the haphazard use of chemicals. The present investigations were carried out to explore the diversity of different insects attracted through bait fermentation. The traditionally prepared bait fermentation was used to attract different insect populations both in treated (traps installed near field crops) and control traps (traps installed near invasive weed). Abundance, evenness, richness and equitability of these trapped insects were calculated. The chemical screening of bait fermentation was done using Gas Chromatography and Mass Spectrometry (GC–MS). Significant difference (P < 0.05) in abundance of insect populations was found in treated compared to control trap. The insects of Noctuidae family recorded high Shannon- Wiener’s diversity index followed by Muscidae. Margalef’s index was recorded maximum in the treated traps (10.77) compared to those of control (8.09). The yielded index indicated that maximum richness was found in bait treated compared to control. The Shannon’s equitability’s values were investigated higher in Noctuidae (1.48), while, maximum evenness was observed in Muscidae (2.05) in treated trap. This fermentation was dried at room temperature and ground at 0.1 micron size. Our result showed significant (P < 0.05) effects of extraction times, with high yield in first extraction by polar solvents. Co-efficient of determination (R2= 0.87) recorded similar results in both extractions, however high root mean square error (0.97) recorded with bait + distilled water solvent showed linear arc line gave better performance. Finally, this fermentation was analyzed using GC–MS and recorded volatile compounds that were involved in the attraction of major and minor pests. Fermentation can help for the attraction of different families of insects of various crops. The field experiment suggested that this fermentation is economical, easily installed and consumed only 0.64 RMB/0.09 USD, including infrastructures per location. Bait fermentation is safe biochemical constituents and did not spread any toxic chemicals to the environment.
Tài liệu tham khảo
Gupta RC (2019) Biomarkers in toxicology. Academic Press, San Diego
Goftishu M, Assefa Y, Niba A, Fininsa C, Le Ru BP (2018) Diversity and abundance of lepidopteran stem borers and their host plants in Ethiopia. J Appl Entomol 142(4):437–449
Guo J, Fu X, Zhao S, Shen X, Wyckhuys KAG, Wu K (2020) Long-term shifts in abundance of (migratory) crop-feeding and beneficial insect species in northeastern Asia. J Pest Sci 93:583–594. https://doi.org/10.1007/s10340-019-01191-9
Lippmann M, Leikauf GD (2020) Environmental toxicants: human exposures and their health effects. Wiley, New York
Bempah CK, Asomaning J, Boateng J (2020) Market basket survey for some pesticides residues in fruits and vegetables from Ghana. J Microbiol Biotechnol Food Sci 9(4):850–871
Sapbamrer R, Thongtip S, Khacha-ananda S, Sittitoon N, Wunnapuk K (2020) Changes in lung function and respiratory symptoms during pesticide spraying season among male sprayers. Arch Environ Occup Health 75(2):88–97
Bao W, Liu B, Simonsen DW, Lehmler H-J (2020) Association between exposure to pyrethroid insecticides and risk of all-cause and cause-specific mortality in the general US adult population. JAMA Intern Med 180(3):367–374
Pang AM, Gay S, Yadav R, Dolea C, Ponce C, Velayudhan R, Grout A, Fehr J, Plenge-Boenig A, Schlagenhauf P (2020) The safety and applicability of synthetic pyrethroid insecticides for aircraft disinsection: a systematic review. Travel Med Infect Dis 33:101570
Spiewak R (2020) Farmers and farmworkers. In: John S, Johansen J, Rustemeyer T, Elsner P, Maibach H (eds) Kanerva’s occupational dermatology. Springer, Cham, pp 1929–1946. https://doi.org/10.1007/978-3-319-68617-2_150
Manna B, MaitiDutta S, Dalapati S, Maiti S (2020) Oxidative stress induced toxicity and DNA stability in some agri-field based livestock/insect by widely used pesticides. Comb Chem High Throughput Screening. https://doi.org/10.2174/1386207323666200415110745
Wise K, Cummings J, English K (2018) Dairy and beef cattle fly IPM Training videos: an integrated pest management program for New York State, 2017–2020 USDA-NIFA CPPM
Ahmed M, Peiwen Q, Gu Z, Liu Y, Sikandar A, Hussain D, Javeed A, Shafi J, Iqbal MF, An R (2020) Insecticidal activity and biochemical composition of Citrullus colocynthis, Cannabis indica and Artemisia argyi extracts against cabbage aphid (Brevicoryne brassicae L). Sci Rep 10(1):1–10
Jeyasankar A (2017) Phytochemicals: as alternate to chemical pesticides for insects pest management. Microbiol Rev 12(4):564–582
Lamara R, Andama M, Olet EA (2020) Phytochemical composition of aqueous crude extracts of selected pesticidal plants used against brassica vegetable pests. Int J Curr Microbiol App Sci 9(1):468–478
Damalas CA, Koutroubas SD (2020) Botanical Pesticides for eco-friendly pest management: drawbacks and limitations. Pesticides Crop Prod Physiol Biochem Action. https://doi.org/10.1002/9781119432241.ch10
Saroj A, Oriyomi OV, Nayak AK, Haider SZ (2020) Phytochemicals of plant-derived essential oils: A novel green approach against pests. In: Egbuna C, Sawicka B (eds) Natural remedies for pest, disease and weed control. Elsevier, Amsterdam, pp 65–79. https://doi.org/10.1016/B978-0-12-819304-4.00006-3
Riat AK (2019) Consequences of phytochemicals on the system of various pest: a review. Res J Pharm Technol 12(9):4595–4598
Jaoko V, Nji Tizi Taning C, Backx S, Mulatya J, Van den Abeele J, Magomere T, Olubayo F, Mangelinckx S, Werbrouck SPO, Smagghe G (2020) The phytochemical composition of Melia volkensii and its potential for insect pest management. Plants 9(2):143
Oriyomi OV (2018) Phytochemical biopesticides. In: Phytochemistry. edn.: Apple Academic Press, pp 303–324
Iqbal MF, Hussain M, Ali MA, Waqar MQ, Nawaz R (2013) Insecticidal activity of different herbal extracts against aphid in bread wheat. Int J Agric Appl Sci (Pakistan) 5(2):98–101
Iqbal MF, Kahloon MH, Nawaz MR, Javaid MI (2011) Effectiveness of some botanical extracts on wheat aphids. J Anim Plant Sci 21(1):114–115
Iqbal MF, Feng WW, Guan M, Xiang LZ, Feng YL (2020) Biological control of natural herbivores on Ambrosia species at Liaoning Province in Northeast China. Appl Ecol Environ Res 18(1):1419–1436
Landolt PJ (1995) Attraction of Mocis latipes (Lepidoptera: Noctuidae) to sweet baits in traps. Florida Entomol 78(3):523
Utrio P, Eriksson K (1977) Volatile fermentation products as attractants for Macrolepidoptera. Ann Zool Fenn 14(2):98–104
Suckling DM, Thomas WP, Burnip GM, Robson A (1990) Monitoring lepidopterous pests at two Canterbury orchards. In: Proceedings of the forty third new zealand weed and pest control conference, pp 322–327. https://doi.org/10.30843/nzpp.1990.43.10916
Butenandt A, Beckmann R, Stamm D, Hevker E (1959) On the sex pheromone of the silkworm moth Bombyx mori, isolation and structure. Z Naturforsch B 14:283–284
El-Sayed AM (2008) The pherobase: database of insect pheromones and semiochemicals. http://www.pherobase.com
Iqbal MF, Feng YL, Liu MC, Lu XR, Nasir M, Sikandar A (2019) Parasitic activity of powdery mildew (pathogen strain HMLAC226) on prostrate knotweed (Polygonum aviculare l.) at various locations of shenyang, northeast china. Appl Ecol Environ Res 17(6):13383–13394
Kyerematen R, Owusu E, Acquah-Lamptey D, Anderson R, Ntiamoa-Baidu Y (2014) Species Composition and Diversity of Insects of the Kogyae Strict Nature Reserve in Ghana. Open J Ecol 4(17):1061–1079
Laaksonen J, Laaksonen T, Itamies J, Rytkonen S, Valimaki P (2006) A new efficient bait-trap model for Lepidoptera surveys-the” Oulu” model. Entomologica Fennica 17(2):153
Pettersson LB, Franzén M (2008) Comparing wine-based and beer-based baits for moth trapping: a field experiment. Entomologisk Tidskrift 129(3):129–134
Shannon ER, Wiener W (1963) The mathematical theory of communication University of Illinois press Urbana Illinois, pp 117
Simpson EH (1949) Measurement of diversity. Nature 163(4148):688
Margalef R (1969) Diversity and stability: a practical proposal and a model of interdependence. Brookhaven Symp Biol 22:25–37. https://hdl.handle.net/10261/166352
Nakamura H (1999) A method for environmental evaluation using indicator groups of butterflies and the RI-index. Jpn J Environ Entomol Zool 10(4):143–159
Janković M, Miličić M, Nedeljković Z, Milovac Ž, Ačanski J, Vujić A (2019) Diversity and structure of hoverfly (Diptera: Syrphidae) communities in agricultural areas in Vojvodina Province (Serbia) a case study on Brassica napus L. J Entomol Res Soc 21(2):129–144
Ahmed M, Ji M, Sikandar A, Iram A, Qin P, Zhu H, Javeed A, Shafi J, Iqbal Z, Farid Iqbal M (2019) Phytochemical analysis, biochemical and mineral composition and GC–MS profiling of methanolic extract of Chinese arrowhead Sagittaria trifolia L. from Northeast China. Molecules 24(17):3025
Huang Z-h, Wang Z-l, Shi B-l, Wei D, Chen J-x, Wang S-l, Gao B-j (2015) Simultaneous determination of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate from Ulmus pumila leaves by GC-MS. Int J Anal Chem 2015: 698630. https://doi.org/10.1155/2015/698630
Tang L, Kim A, Miller SA, Lloyd DK (2010) Development and validation of a specific and sensitive GC-FID method for the determination of impurities in 5-chlorovaleroyl chloride. J Pharm Biomed Anal 53(3):309–314
Mayer DG, Butler DG (1993) Statistical validation. Ecol Model 68(1–2):21–32
Royo-Esnal A, Torra J, Conesa JA, Forcella F, Recasens J (2010) Modeling the emergence of three arable bedstraw (Galium) species. Weed Sci 58(1):10–15
El-Sayed AM, Heppelthwaite VJ, Manning LM, Gibb AR, Suckling DM (2005) Volatile constituents of fermented sugar baits and their attraction to lepidopteran species. J Agric Food Chem 53(4):953–958
Landolt PJ (2000) Chemical attractants for yellowjackets and paper wasps. In.: Google Patents
Gertler S, Steiner L, Mitchell W, Barthel W (1958) Insect attractants, esters of 6-methyl-3-cycohexene-1-carboxylic acid as attractants for the mediterranean fruit fly. J Agric Food Chem 6(8):592–594
Simchoni-Barak M, Schlein Y, Muller GC (2013) Controlling sugar feeding insects. In.: Google Patents
Bernier UR, Kline DL, Barnard DR, Schreck CE, Yost RA (2000) Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Anal Chem 72(4):747–756
Becher PG, Hagman A, Verschut V, Chakraborty A, Rozpędowska E, Lebreton S, Bengtsson M, Flick G, Witzgall P, Piškur J (2018) Chemical signaling and insect attraction is a conserved trait in yeasts. Ecol Evol 8(5):2962–2974
Bharathi TE, Sathiyanandam VK, David PMM (2004) Attractiveness of some food baits to the melon fruit fly, Bactrocera cucurbitae (Coquillett)(Diptera: Tephritidae). Int J Trop Insect Sci 24(2):125–134
Mazzetto F, Gonella E, Crotti E, Vacchini V, Syrpas M, Pontini M, Mangelinckx S, Daffonchio D, Alma A (2016) Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria. J Pest Sci 89(3):783–792
Hamby KA, Becher PG (2016) Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J Pest Sci 89(3):621–630
Wakabayashi N, Cunningham RT (1991) Four-component synthetic food bait for attracting both sexes of the melon fly (Diptera: Tephritidae). J Econ Entomol 84(6):1672–1676
Venugopal V, Subaharan K (2019) Electrophysiological and behavioral response of red palm weevil, Rhynchophorus ferrugineus (Olivier)(Coleoptera: Dryophthoridae) to fermented coconut sap neera. J Plantation Crops 47(2):82–89. https://doi.org/10.25081/jpc.2019.v47.i2.5767
Audrain B, Farag MA, Ryu C-M, Ghigo J-M (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39(2):222–233
Ômura H, Honda K, Hayashi N (2000) Identification of feeding attractants in oak sap for adults of two nymphalid butterflies, Kaniska canace and Vanessa indica. Physiol Entomol 25(3):281–287
Haimanot T/Mariam (2015) Study on the Electrophysiological and Behavioral Responses of Bactrocera dorsalis, B. zonata, B. cucurbitae, B. oleae and C. capitata to protein lures. A Thesis presented to the School of Graduate Studies of Addis Ababa University in partial Fulfilment of the Degree of Masters of Science in Biology. https://pdfs.semanticscholar.org/8193/f56f92156a9f96655d33f0f550fa8bddd4a1.pdf
Cruz A, Padilla-Martínez II, García-Báez EV (2012) A synthetic method to access symmetric and non-symmetric 2-(N, N’-disubstituted) guanidinebenzothiazoles. Molecules 17(9):10178–10191
Tan KH, Nishida R, Jang EB, Shelly TE (2014) Pheromones, male lures, and trapping of tephritid fruit flies. In: Shelly T, Epsky N, Jang E, Reyes-Flores J, Vargas R (eds) Trapping and the detection, control, and regulation of tephritid fruit flies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9193-9_2
Dugravot S, Mondy N, Mandon N, Thibout E (2005) Increased sulfur precursors and volatiles production by the leek Allium porrum in response to specialist insect attack. J Chem Ecol 31(6):1299–1314
Saguchi R, Hojo T (2017) Sustained release preparation comprising insect pest-targeting gel composition. In.: Google Patents
Hussein HM, Ubaid JM, Hameed IH (2016) Inscticidal activity of methanolic seeds extract of Ricinus communis on adult of Callosobruchus maculatus (coleopteran: brauchidae) and analysis of its phytochemical composition. Int J Pharmacogn Phytochem Res 8(8):1385–1397
Ando T, Yamakawa R (2015) Chiral methyl-branched pheromones. Nat Prod Rep 32(7):1007–1041
Andres VS, Ortego F, Castañera P (2007) Effects of gamma-irradiation on midgut proteolytic activity of the mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Arch Insect Biochem Physiol 65(1):11–19
Pirner GM (2018) Behavioral, physiological, and neurological influences of pheromones and interomones in domestic dogs. Pirner-Dissertation-2018.pdf. https://hdl.handle.net/2346/82084
Fernandes F, Pereira DM, de Pinho PG, Valentão P, Pereira JA, Bento A, Andrade PB (2009) Metabolic fate of dietary volatile compounds in Pieris brassicae. Microchem J 93(1):99–109
Krång A-S, Knaden M, Steck K, Hansson BS (2012) Transition from sea to land: olfactory function and constraints in the terrestrial hermit crab Coenobita clypeatus. Proc R Soc Biol Sci 279(1742):3510–3519
Krång A-S, Knaden M, Steck K, Hansson BS (2012) Transition from sea to land: olfactory function and constraints in the terrestrial hermit crab Coenobita clypeatus. Proc R Soc Biol Sci 279(1742):3510–3519. https://doi.org/10.1098/rspb.2012.0596
Kyerematen R, Adu-Acheampong S, Acquah-Lamptey D, Andersen RS, Owusu EH, Mantey J (2018) Butterfly diversity as indicator for environmental health within Tarkwa Gold Mine, Ghana. Environ Nat Resour Res 8:69–83. https://doi.org/10.5539/enrr.v8n3p69
Emmel TC, Larsen TB (1997) Butterfly diversity in Ghana, West Africa. Trop Lepidoptera Res 8:1–13
Sengonca C, Liu B (2003) Effect of GCSC-BtA biocide on abundance and diversity of some cabbage pests as well as their natural enemies in southeastern China. J Plant Dis Prot 110(5):484–491
Biasazin T, Chernet H, Herrera S, Bengtsson M, Karlsson M, Lemmen-Lechelt J, Dekker T (2018) Detection of volatile constituents from food lures by Tephritid fruit flies. Insects 9(3):119
Nganso BT, Kyerematen R, Obeng-Ofori D (2012) Diversity and abundance of butterfly species in the Abiriw and Odumante sacred groves in the Eastern Region of Ghana. Res Zool 2(5):38–46
Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405(6783):212
Pinheiro CEG, Ortiz JVC (1992) Communities of fruit-feeding butterflies along a vegetation gradient in central Brazil. J Biogeogr 19:505–511. https://doi.org/10.2307/2845769
Walther BA, Morand S (1998) Comparative performance of species richness estimation methods. Parasitology 116(4):395–405
Daily GC, Ehrlich PR (1995) Preservation of biodiversity in small rainforest patches: rapid evaluations using butterfly trapping. Biodivers Conserv 4(1):35–55
Leinonen R, Itämies J (2000) Notes of the moth fauna (Lepidoptera) in the Finnish Green belt zone as indicated by bait traps. Oulanka Reports 23:31–39
Süssenbach D, Fiedler K (1999) Noctuid moths attracted to fruit baits: testing models and methods of estimating species diversity. Nota Lepidopterologica 22:115–154
Eyer JR, Medler JT (1940) Attractiveness to codling moth of substances related to those elaborated by heterofermentative bacteria in baits. J Econ Entomol 33(6):933–940
Landolt PJ, Higbee BS (2002) Both sexes of the true armyworm (Lepidoptera: Noctuidae) trapped with the feeding attractant composed of acetic acid and 3-methyl-1-butanol. Florida Entomol 85(1):182–186
Landolt PJ, Alfaro JF (2001) Trapping Lacanobia subjuncta, Xestia nigrum, and Mamestra configurata (Lepidoptera: Noctuidae) with acetic acid and 3-methyl-1-butanol in controlled release dispensers. Environ Entomol 30(4):656–662
Landolt PJ, Hammond PC (2001) Trapping noctuid moths (Lepidoptera: Noctuidae) with acetic acid and isoamyl alcohol in Yakima County. J Lepid Soc, Washington
Iqbal W, Malik MF, Sarwar MK, Azam I, Iram N, Rashda A (2014) Role of housefly (Musca domestica, Diptera; Muscidae) as a disease vector; a review. J Entomol Zool Stud 2(2):159–163
El-Shafie HAF, Faleiro JR (2017) Semiochemicals and their potential use in pest management. Biological Control of Pest and Vector Insects. Chapter 1. https://doi.org/10.5772/66463
Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47(1):57–92
Epsky ND, Kendra PE, Schnell EQ (2014) History and development of food-based attractants. In: Trapping and the detection, control, and regulation of tephritid fruit flies. Berlin: Springer, pp 75–118
Dressler RL (1982) Biology of the orchid bees (Euglossini). Annu Rev Ecol Syst 13(1):373–394
Mönkkönen M, Mutanen M (2003) Occurrence of moths in boreal forest corridors. Conserv Biol 17(2):468–475
Nyakeri EM, Ogola HJO, Amimo FA, Ayieko MA (2017) Comparison of the performance of different baiting attractants in the egg laying activity of the black soldier fly (Hermetia illucens L.). J Entomol Zool Stud 5(6):1583–1586. http://62.24.102.115:8080/xmlui/handle/123456789/1234