Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden

Canadian Science Publishing - Tập 75 Số 8 - Trang 1323-1335 - 1997
Anders Dahlberg, L. Jönsson, Jan‐Erik Nylund

Tóm tắt

The structure of an ectomycorrhizal community was assessed on a 100-m2 plot in a 100-year-old, oligotrophic Norway spruce, Picea abies (L.) Karst., forest in southern Sweden. During the 6-year study (1986–1992) sporocarps were identified and their biomass determined. Late in the fall of 1993, we identified mycorrhizas and estimated their abundance. Forty-eight epigeous, ectomycorrhizal taxa were identified based on the examination of sporocarps. Hygrophorus olivaceoalbus (Fr.:Fr.) Fr. and six species of Cortinarius, i.e., C. acutus (Pers.:Fr.) Fr., C. brunneus (Pers.:Fr.) Fr., C. evernius (Fr.:Fr.) Fr., C. obtusus (Fr.) Fr., C. paleaceus Fr., and C. strobilaceus Moser, were found every year. For the period as a whole, they accounted for 32% of the annual sporocarp biomass. Twenty-one species were observed during 1 year only. Cenococcum geophilum Fr. and Piloderma croceum Erikss. & Hjortst. accounted for 18 and 19%, respectively, of the mycorrhizal abundance of the mycorrhizal root tips examined. Using polymerase chain reaction (PCR) based molecular methods, we were able to distinguish 25 taxa forming mycorrhiza from soil cores covering a total of 22.5 cm2 of the forest floor. Twelve of these taxa were identified using a sporocarp or mycelial culture based reference data base containing 25 of the sporocarp-producing species. These 12 species accounted for an average of 74% of the sporocarp biomass. In contrast, their share of the estimated mycorrhizal abundance and biomass was about 30%. At least half of the abundance of the belowground ectomycorrhizal community was accounted for by species that did not produce conspicuous epigeous sporocarps. Ascomycetes accounted for about 20% of the mycorrhizal abundance. Calculations showed that on a per hectare basis there was 8.8 kg of fungal biomass in the form of sporocarps (average annual cumulative production), an estimated 250–400 kg as mycorrhiza (standing crop) and 440 kg in the form of sclerotia of Cenococcum geophilum (standing crop). Key words: ectomycorrhizal community structure, ITS–RFLP, Picea abies.

Từ khóa


Tài liệu tham khảo

Abuzinadah R.A., 1986, New Phytol., 103, 1, 10.1111/j.1469-8137.1986.tb00590.x

Brandrud T.E., 1995, Sweden. For. Ecol. Manage., 71, 1, 10.1016/0378-1127(94)06080-3

Clemensson-Lindell A., 1995, For. Ecol. Manage., 71, 123, 10.1016/0378-1127(94)06089-2

Colpaert J.V., 1992, New Phytol., 120, 127, 10.1111/j.1469-8137.1992.tb01065.x

Dahlberg A., 1990, Scand. J. For. Res., 5, 103, 10.1080/02827589009382597

Dahlberg A., 1994, New Phytol., 128, 225, 10.1111/j.1469-8137.1994.tb04006.x

Dahlberg A., 1995, Can. J. Bot., 73, 1222, 10.1139/b95-382

Dahlberg A., 1991, Plant Soil, 136, 73, 10.1007/BF02465222

Danielson R.M., 1984, Can. J. Bot., 62, 454, 10.1139/b84-068

Danielson R.M., 1989, Mycologia, 81, 335, 10.1080/00275514.1989.12025756

Danielson R.M., 1989, New Phytol., 112, 41, 10.1111/j.1469-8137.1989.tb00306.x

Egli S., 1981, Schweiz. Z. Forstwes., 132, 345

Erland S., 1995, Mycol. Res., 99, 1425, 10.1016/S0953-7562(09)80788-0

Finlay R.D., 1992, New Phytol., 120, 105, 10.1111/j.1469-8137.1992.tb01063.x

Gardes M., 1993, Mol. Ecol., 2, 113, 10.1111/j.1365-294X.1993.tb00005.x

Gardes M., 1996, Can. J. Bot., 74, 1572, 10.1139/b96-190

Grier C.C., 1981, Can. J. For. Res., 11, 155, 10.1139/x81-021

Griffiths R.P., 1991, California. Biol. Fertil. Soils, 11, 196, 10.1007/BF00335767

Griffiths R.P., 1995, Plant Soil, 173, 343, 10.1007/BF00011473

Hatch A.B., 1934, Sven. Bot. Tidskr., 28, 369

Henrion B., 1994, Mycol. Res., 98, 37, 10.1016/S0953-7562(09)80333-X

Hutchson L.J., 1990, Mycologia, 82, 36, 10.1080/00275514.1990.12025837

KirCn O., 1996, Plant Soil., 181, 295, 10.1007/BF00012064

Kielland-Lund J., 1973, Int. Biol. Programme, 11, 173

Lange J.E., 1923, Dan. Bot. Ark., 13, 1

Lihnell D., 1942, Symb. Bot. Ups., 2, 1

Majdi H., 1996, Plant Soil, 185, 305, 10.1007/BF02257536

Majdi H., 1993, Scand. J. For. Res., 8, 147, 10.1080/02827589309382764

Markkola A.M., 1995, New Phytol., 131, 139, 10.1111/j.1469-8137.1995.tb03063.x

Marks G.C., 1967, Aust. For., 31, 94, 10.1080/00049158.1967.10675441

Mehus H., 1986, Nord. J. Bot., 6, 679, 10.1111/j.1756-1051.1986.tb00468.x

Mikola P., 1962, Commun. Inst. For. Fenn., 1

Mikola P., 1966, Acta Bot. Fenn., 3, 406

Mullis K.B., 1987, Methods Enzymol., 155, 335, 10.1016/0076-6879(87)55023-6

Murakami Y., 1987, Trans. Br. Mycol. Soc., 89, 187, 10.1016/S0007-1536(87)80151-1

Nantel P., 1992, Ecology, 73, 99, 10.2307/1938724

Ogawa M., 1981, Proceedings, International Union of Forest Research Organizations World Congress, 89

Ohenoja E., 1984, Ann. Bot. Fenn., 21, 357

Ramstedt M., 1983, Trans. Br. Mycol. SOC., 81, 157, 10.1016/S0007-1536(83)80220-4

Seiler J., 1995, Plant Soil, 176, 139, 10.1007/BF00017684

Sjors H., 1965, Acta Phytogeogr. Suc., 50, 48

Taylor A.F.S., 1991, Mycol. Res., 95, 381, 10.1016/S0953-7562(09)81256-2

Trappe J ., 1969, Bot., 47, 1389

Viklund K., 1995, Can. J. Bot., 73, 200, 10.1139/b95-023

Visser S., 1995, New Phytol., 129, 389, 10.1111/j.1469-8137.1995.tb04309.x

Wallander H., 1992, New Phytol., 120, 495, 10.1111/j.1469-8137.1992.tb01798.x