Species distribution models and ecological theory: A critical assessment and some possible new approaches
Tóm tắt
Từ khóa
Tài liệu tham khảo
Antoine, 2004, Contrasting fundamental and realized ecological niches with epiphytic lichen transplants in an old-growth Pseudotsuga forest, Bryologist, 107, 163, 10.1639/0007-2745(2004)107[0163:CFAREN]2.0.CO;2
Araujo, 2005, Validation of species-climate impact models under climate change, Global Change Biol., 11, 1504, 10.1111/j.1365-2486.2005.01000.x
Arhonditsis, 2006, Exploring ecological patterns with structural equation modelling and Bayesian analysis, Ecol. Model., 192, 385, 10.1016/j.ecolmodel.2005.07.028
Austin, 1999, A silent clash of paradigms: some inconsistencies in community ecology, Oikos, 86, 170, 10.2307/3546582
Austin, 1999, The potential contribution of vegetation ecology to biodiversity research, Ecography, 22, 465, 10.1111/j.1600-0587.1999.tb01276.x
Austin, 2002, Spatial prediction of species distribution: an interface between ecological theory and statistical modelling, Ecol. Model., 157, 101, 10.1016/S0304-3800(02)00205-3
Austin, 2002, Case studies of the use of environmental gradients in vegetation and fauna modelling: theory and practice in Australia and New Zealand, 73
Austin, 2005, Vegetation and environment: discontinuities and continuities, 52
Austin, 1981, Observational analysis of environmental gradients, Proc. Ecol. Soc. Austr., 11, 109
Austin, 1997, To fix or not to fix the species limits, that is the ecological question: response to Jari Oksanen, J. Veg. Sci., 8, 743, 10.2307/3237380
Austin, 1990, Measurement of the realised qualitative niche: environmental niches of five Eucalyptus species, Ecol. Monogr., 60, 161, 10.2307/1943043
Austin, M.P., Belbin, L. Meyers, J.A., Doherty, M.D., Luoto, M. (2006). Evaluation of statistical models for predicting plant species distributions: role of artificial data and theory. Ecol. Model., doi:10.1016/j.ecolmodel.2006.05.023, in press.
Austin, 1994, Determining species response functions to an environmental gradient by means of a β-function, J. Veg. Sci., 5, 215, 10.2307/3236154
Austin, M.P., Meyers, J.A., Belbin, L., Doherty, M.D., 1995. Modelling of landscape patterns and processes using biological data. Subproject 5: simulated data case study. Consultancy Report for ERIN, CSIRO Wildlife and Ecology, Canberra.
*Bhattarai, 2004, Fern species richness along a central Himalayan elevational gradient, Nepal, J. Biogeogr., 31, 389, 10.1046/j.0305-0270.2003.01013.x
Bio, A.M.F., 2000. Does vegetation suit our models? Data and model assumptions and the assessment of species distribution in space. Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht. Nederlandse Geografische Studies 265.
Bio, 1998, Determining alternative models for vegetation response analysis: a non-parametric approach, J. Veg. Sci., 9, 5, 10.2307/3237218
Blackburn, 1992, A method of estimating the slope of upper bounds of plots of body size and abundance in natural animal assemblages, Oikos, 65, 107, 10.2307/3544892
Bloom, 1985, Resource limitationin plants-an economic analogy, Ann. Rev. Ecol. Syst., 16, 363, 10.1146/annurev.es.16.110185.002051
Boyce, 2002, Evaluating resource selection functions, Ecol. Model., 157, 281, 10.1016/S0304-3800(02)00200-4
Brotons, 2004, Presence-absence versus presence-only modelling methods for predicting bird habitat suitability, Ecography, 27, 437, 10.1111/j.0906-7590.2004.03764.x
*Bustamante, 2004, Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain: statistical models work better than existing maps, J. Biogeogr., 31, 295, 10.1046/j.0305-0270.2003.01006.x
Brzeziecki, 1987, Analysis of vegetation–environment relationships using a simultaneous equations model, Vegetatio, 71, 175, 10.1007/BF00039169
Cade, 2000, Estimating effects of constraints on plant performance with regression quantiles, Oikos, 91, 245, 10.1034/j.1600-0706.2000.910205.x
Cade, 2003, A gentle introduction to quantile regression for ecologists, Front. Ecol. Environ., 1, 412, 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2
Cade, 2005, Quantile regression reveals hidden bias and uncertainty in habitat models, Ecology, 86, 786, 10.1890/04-0785
Cade, 1999, Estimating effects of limiting factors with regression quantiles, Ecology, 80, 311, 10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2
Cawsey, 2002, Regional vegetation mapping in Australia: a case study in the practical use of statistical modelling, Biodivers. Conserv., 11, 2239, 10.1023/A:1021350813586
*Clarke, 2003, Validating the use of generalized additive models and at-sea surveys to estimate size and temporal trends of seabird populations, J. Appl. Ecol., 40, 278, 10.1046/j.1365-2664.2003.00802.x
Cleveland, 1988, Locally weighted regression: an approach to regression analysis by local fitting, J. Am. Stat. Assoc., 83, 596, 10.2307/2289282
Coudun, 2005, Ecological behaviour of herbaceous forest species along a pH gradient: a comparison between oceanic and semicontinental regions in northern France, Global Ecol. Biogeogr., 14, 263, 10.1111/j.1466-822X.2005.00144.x
Cressie, 1993
Drake, 2006, Modelling ecological niches with support vector machines, J. Appl. Ecol., 43, 424, 10.1111/j.1365-2664.2006.01141.x
Dubayah, 1995, Topographic solar radiation models for GIS, Int. J. Geogr. Inf. Syst., 9, 405, 10.1080/02693799508902046
Elith, 2002, Mapping epistemic uncertainties and vague concepts in predictions of species distribution, Ecol. Model., 157, 313, 10.1016/S0304-3800(02)00202-8
Elith, 2005, The evaluation strip: a new and robust method for plotting predicted responses from species distribution models, Ecol. Model., 186, 280, 10.1016/j.ecolmodel.2004.12.007
Elith, 2006, Novel methods improve prediction of species distributions from occurrence data, Ecography, 29, 129, 10.1111/j.2006.0906-7590.04596.x
*Engler, 2004, An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data, J. Appl. Ecol., 41, 263, 10.1111/j.0021-8901.2004.00881.x
Ejrnaes, 2000, Can we trust gradients extracted by detrended correspondence analysis?, J. Veg. Sci., 11, 565, 10.2307/3246586
Ferrier, 2002, Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. 1. Species-level modelling, Biodivers. Conserv., 11, 2275, 10.1023/A:1021302930424
Fitzgerald, 1992, The application of neural networks to the floristic classification of remote sensing and GIS data in complex terrain, 570
Foody, 2003, Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI-rainfall relationship, Remote Sens. Environ., 88, 283, 10.1016/j.rse.2003.08.004
Foody, 2004, Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna, Global Ecol. Biogeogr., 13, 315, 10.1111/j.1466-822X.2004.00097.x
Foody, 2005, Clarifications on local and global data analysis, Global Ecol. Biogeogr., 14, 99, 10.1111/j.1466-822X.2005.00142.x
Foody, 2005, Mapping the richness and composition of British breeding birds from coarse spatial resolution satellite sensor imagery, Int. J. Remote Sens., 26, 3943, 10.1080/01431160500165716
Fotheringham, 2002
Franklin, 1995, Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients, Prog. Phys. Geogr., 19, 474, 10.1177/030913339501900403
Friedman, 2000, Additve logistic regression: a statistical view of boosting, Ann. Stat., 28, 337, 10.1214/aos/1016218223
Garrido, 2005, Pre- and post-germination determinants of spatial variation in recruitment in the perennial herb Helleborus foetidus L. (Ranunculaceae), J. Ecol., 93, 60, 10.1111/j.1365-2745.2004.00955.x
Gegout, 2005, EcoPlant: A forest site database linking floristic data with soil and climate variables, J. Veg. Sci., 16, 257, 10.1111/j.1654-1103.2005.tb02363.x
*Gibson, 2004, Spatial prediction of rufous bristlebird habitat in a coastal heathland: a GIS-based approach, J. Appl. Ecol., 41, 213, 10.1111/j.0021-8901.2004.00896.x
Giller, 1984
Grace, 1997, A structural equation model of plant species richness and its application to a coastal wetland, Am. Nat., 149, 436, 10.1086/285999
Graham, 2004, New developments in museum-based informatics and applications in biodiversity analysis, Trends Ecol. Evol., 19, 497, 10.1016/j.tree.2004.07.006
Guisan, 2000, Predictive habitat distribution models in ecology, Ecol. Model., 135, 147, 10.1016/S0304-3800(00)00354-9
Guisan, 2002, Generalized linear and generalized additive models in studies of species distributions: setting the scene, Ecol. Model., 157, 89, 10.1016/S0304-3800(02)00204-1
Guisan, 2005, Predicting species distribution: offering more than simple habitat models?, Ecol. Lett., 8, 993, 10.1111/j.1461-0248.2005.00792.x
Harrington, 1999, Climate change and trophic interactions, Trends Ecol. Evol., 14, 146, 10.1016/S0169-5347(99)01604-3
Hastie, 1990
Hirzel, 2001, Assessing habitat-suitability models with a virtual species, Ecol. Model., 145, 111, 10.1016/S0304-3800(01)00396-9
Hirzel, 2002, Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data?, Ecology, 83, 2027, 10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2
Huisman, 1993, A hierarchical set of models for species response analysis, J. Veg. Sci., 4, 37, 10.2307/3235732
Huntley, 1995, Modelling present and potential future ranges of some European higher plants using climate response surfaces, J. Biogeogr., 22, 967, 10.2307/2845830
*Huntley, 2004, The performance of models relating species geographical distributions to climate is independent of trophic level, Ecol. Lett., 7, 417, 10.1111/j.1461-0248.2004.00598.x
Huston, 1994
Huston, 2002, Introductory essay: critical issues for improving predictions, 7
Iriondo, 2003, Structural equation modelling: an alternative for assessing causal relationships in threatened plant populations, Biol. Conserv., 113, 367, 10.1016/S0006-3207(03)00129-0
*Jeganathan, 2004, Modelling habitat selection and distribution of the critically endangered Jerdon's courser Rhinoptilus bitorquatus in scrub jungle: an application of a new tracking method, J. Appl. Ecol., 41, 224, 10.1111/j.0021-8901.2004.00897.x
Jetz, 2002, Geographic range size and determinants of avian species richness, Science, 297, 1548, 10.1126/science.1072779
Jetz, 2005, Local and global approaches to spatial data analysis in ecology, Global Ecol. Biogeogr., 14, 97, 10.1111/j.1466-822X.2004.00129.x
Johnson, 1991, Ecosystem modelling with LISREL: a new approach for measuring direct and indirect effects, Ecol. Appl., 1, 383, 10.2307/1941898
Kadmon, 2003, A systematic analysis of factors affecting the performance of climatic envelope models, Ecol. Appl., 13, 853, 10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2
Kadmon, 2004, Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models, Ecol. Appl., 14, 401, 10.1890/02-5364
Kaiser, 1994, Statistical models for limiting nutrient relations in inland waters, J. Am. Stat. Assoc., 89, 410, 10.2307/2290841
Knight, 2002, Variation in nuclear DNA content across environmental gradients: a quantile regression analysis, Ecol. Lett., 5, 66, 10.1046/j.1461-0248.2002.00283.x
Krause-Jensen, 2000, Eelgrass, Zostera marina, growth along depth gradients; upper boundaries of the variation as a powerful predictive tool, Oikos, 91, 233, 10.1034/j.1600-0706.2001.910204.x
Krebs, 2001
Kuhn, 1970
Leathwick, 1995, Climatic relationships of some New Zealand forest tree species, J. Veg. Sci., 6, 237, 10.2307/3236219
Leathwick, 1998, Are New Zealand's Nothofagus species in equilibrium with their environment?, J. Veg. Sci., 9, 719, 10.2307/3237290
Leathwick, 2002, Intra-generic competition among Nothofagus in New Zealand's primary indigenous forests, Biodivers. Conserv., 11, 2177, 10.1023/A:1021394628607
Leathwick, 2001, Competitive interactions between tree species in New Zealand's old-growth indigenous forests, Ecology, 82, 2560, 10.1890/0012-9658(2001)082[2560:CIBTSI]2.0.CO;2
Leathwick, 2001, Soil and atmospheric water deficits and the distributions of New Zealand's indigenous tree species, Funct. Ecol., 15, 233, 10.1046/j.1365-2435.2001.00504.x
Leathwick, J.R., Elith, J., Hastie, T. Comparative performance of two techniques for statistical modelling of presence–absence data. Ecology, in press.
Leathwick, 1996, Predicting changes in the composition of New Zealand's indigenous forests in response to global warming: a modelling approach, Environ. Software, 11, 81, 10.1016/S0266-9838(96)00045-7
Leathwick, 2005, Using multivariate adaptive splines to predict the distributions of New Zealand's freshwater diadromous fish, Freshwater Biol., 50, 2034, 10.1111/j.1365-2427.2005.01448.x
Leathwick, J.R., Elith, J., Francis, M.P., Hastie, T., Taylor, P. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecol. Prog. Ser., in press.
Lee, 2004, Comparison of approaches in estimating interactions and quadratic effects of latent variables, Multivariate Behav. Res., 39, 37, 10.1207/s15327906mbr3901_2
Lehmann, 2002, Regression models for spatial prediction: their role for biodiversity and conservation, Biodivers. Conserv., 11, 2085, 10.1023/A:1021354914494
Lehmann, 2002, GRASP: generalized regression analysis and spatial prediction, Ecol. Model., 157, 189, 10.1016/S0304-3800(02)00195-3
Maggini, R., Lehmann, A., Zimmermann, N.E., Guisan, A., 2006. Improving generalized regression analysis for spatial predictions of forest communities. J. Biogeogr., in press.
*Malo, 2004, Can we mitigate animal–vehicle accidents using predictive models?, J. Appl. Ecol., 41, 701, 10.1111/j.0021-8901.2004.00929.x
Manel, 1999, Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with Himalayan river bird, Ecol. Model., 120, 337, 10.1016/S0304-3800(99)00113-1
Marquez, 2004, Dependence of broad-scale geographical variation in fleshy-fruited plant species richness on disperser bird species richness, Global Ecol. Biogeogr., 13, 295, 10.1111/j.1466-822X.2004.00100.x
McCullagh, 1989
McCune, 2002
McCune, 2003, Use of a smoother to forecast occurrence of epiphytic lichens under alternative forest management plans, Ecol. Appl., 13, 1110, 10.1890/1051-0761(2003)13[1110:UOASTF]2.0.CO;2
*McPherson, 2004, The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact?, J. Appl. Ecol., 41, 811, 10.1111/j.0021-8901.2004.00943.x
Miller, 2002, Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence, Ecol. Model., 157, 227, 10.1016/S0304-3800(02)00196-5
Mitchell, 1992, Testing evolutionary and ecological hypotheses using path analysis and structural equation modelling, Funct. Ecol., 6, 123, 10.2307/2389745
Mitchell, 1994, Effects of floral traits, pollinator visitation, and plant size on Ipomopsis aggregrata fruit production, Am. Nat., 143, 870, 10.1086/285637
Moisen, 2002, Comparing five modelling techniques for predicting forest characteristics, Ecol. Model., 157, 209, 10.1016/S0304-3800(02)00197-7
Moisen, G.G., Freeman, E.A., Blackard, J.A., Zimmermann, N.E., Edwards Jr., T.C., 2006. Predicting tree species presence and basal area in Utah—a comparison of generalized additive models, stochastic gradient boosting, and tree-based methods. Ecol. Model., in press.
Munoz, 2004, Comparison of statistical methods commonly used in predictive modelling, J. Veg. Sci., 15, 285, 10.1111/j.1654-1103.2004.tb02263.x
Nicholls, 1989, How to make biological surveys go further with generalized linear models, Biol. Conserv., 50, 51, 10.1016/0006-3207(89)90005-0
Nicholls, 1991, Examples of the use of generalized linear models in analysis of survey data for conservation evaluation, 191
Osborne, 2002, Should data be partitioned spatially before building large-scale distribution models?, Ecol. Model., 157, 249, 10.1016/S0304-3800(02)00198-9
Pausas, 1995, Modelling habitat quality for arboreal marsupials in the South coastal forests of New South Wales, Australia, For. Ecol. Manag., 78, 39, 10.1016/0378-1127(95)03598-5
Pausas, 1997, A forest simulation model for predicting eucalypt dynamics and habitat quality for arboreal marsupials, Ecol. Appl., 7, 921, 10.1890/1051-0761(1997)007[0921:AFSMFP]2.0.CO;2
Pearce, 2000, Evaluating the predictive performance of habitat models developed using logistic regression, Ecol. Modell., 133, 225, 10.1016/S0304-3800(00)00322-7
Pearson, 2003, Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?, Global Ecol. Biogeogr., 12, 361, 10.1046/j.1466-822X.2003.00042.x
Phillips, 2006, Maximum entropy modelling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026
Prentice, 1992, A global biome model based on plant physiology and dominance, soil properties and climate, J. Biogeogr., 19, 117, 10.2307/2845499
Ricklefs, 2004, A comprehensive framework for global patterns in biodiversity, Ecol. Lett., 7, 1, 10.1046/j.1461-0248.2003.00554.x
Rubio, 2003, A critical test of the two prevailing theories of plant resonse to nutrient availability, Am. J. Bot., 90, 143, 10.3732/ajb.90.1.143
*Rushton, 2004, New paradigms for modelling species distributions?, J. Appl. Ecol., 41, 193, 10.1111/j.0021-8901.2004.00903.x
Rydgren, 2003, Species response curves along environmental gradients. A case study from SE Norwegian swamp forests, J. Veg. Sci., 14, 869, 10.1111/j.1654-1103.2003.tb02220.x
Scharf, 1998, Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques, Ecology, 79, 448, 10.1890/0012-9658(1998)079[0448:IERFTE]2.0.CO;2
Schroder, 2005, Rejecting the mean: estimating the response of fen plant species to environmental factors by non-linear quantile regression, J. Veg. Sci., 16, 373, 10.1111/j.1654-1103.2005.tb02376.x
Schumacker, 1998
Scott, 2002
*Segurado, 2004, An evaluation of methods for modelling species distributions, J. Biogeogr., 31, 1555, 10.1111/j.1365-2699.2004.01076.x
Shipley, 1999, Testing causal explanations in organismal biology: causation, correlation and structural equation modelling, Oikos, 86, 374, 10.2307/3546455
Shipley, 2000
Shipley, 2000, The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species, Ecoscience, 7, 183, 10.1080/11956860.2000.11682587
Smith, 1994, Autocorrelation in logistic regression modelling of species’ distributions, Global Ecol. Biogeogr. Lett., 4, 47, 10.2307/2997753
Stockwell, 1992, Induction of sets of rules from animal distribution data: a robust and informative method of data analysis, Math. Comput. Simul., 33, 385, 10.1016/0378-4754(92)90126-2
Termansen, 2006, The use of genetic algorithms and Baysian classification to model species distributions, Ecol. Model., 192, 410, 10.1016/j.ecolmodel.2005.07.009
Thomson, 1996, Untangling multiple factors in spatial distributions: lilies, gophers and rocks, Ecology, 77, 1698, 10.2307/2265776
*Thuiller, 2003, BIOMOD-optimising predictions of species distributions and projecting potential future shifts under global change, Global Change Biol., 9, 1353, 10.1046/j.1365-2486.2003.00666.x
*Thuiller, 2003, Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain), Global Ecol. Biogeogr., 12, 313, 10.1046/j.1466-822X.2003.00033.x
Thuiller, 2003, Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales, J. Veg. Sci., 14, 669, 10.1111/j.1654-1103.2003.tb02199.x
*Thuiller, 2004, Do we need land-cover data to model species distributions in Europe?, J. Biogeogr., 31, 353, 10.1046/j.0305-0270.2003.00991.x
Van der Ploeg, 1999, On the origin of the theory of mineral nutrition of plants and the law of the minimum, Soil Sci. Soc. Am. J., 63, 1055, 10.2136/sssaj1999.6351055x
Van Neil, 2004, Effect of error in the DEM on environmental variables for predictive vegetation modelling, J. Veg. Sci., 15, 747, 10.1111/j.1654-1103.2004.tb02317.x
Van Neil, K.P., Austin, M.P. Predictive vegetation modelling for conservation: impact of error propagation from digital elevation data. Ecol. Appl., in press.
*Venier, 2004, Climate and satellite-derived land cover for predicting breeding bird distribution in the Great Lakes Basin, J. Biogeogr., 31, 315, 10.1046/j.0305-0270.2003.01014.x
Vile, 2006, A structural equation model to integrate changes in functional strategies during old-field succession, Ecology, 87, 504, 10.1890/05-0822
Wamelink, 2005, Plant species as predictors of soil pH: replacing expert judgement with measurements, J. Veg. Sci., 16, 461, 10.1111/j.1654-1103.2005.tb02386.x
Weiher, 2003, Species richness along multiple gradients: testing a general multivariate model in oak savannas, Oikos, 101, 311, 10.1034/j.1600-0706.2003.12216.x
Weiher, 2004, Multivariate control of plant species richness and community biomass in blackland prairie, Oikos, 106, 151, 10.1111/j.0030-1299.2004.12545.x
Whittaker, 2001, Scale and species richness: towards a general, hierarchical theory of species diversity, J. Biogeogr., 28, 453, 10.1046/j.1365-2699.2001.00563.x
Wood, 2002, GAMs with integrated model selection using penalized regression splines and applications to environmental modelling, Ecol. Model., 157, 157, 10.1016/S0304-3800(02)00193-X
Yee, 2002, Vector generalized additive models in plant ecology, Ecol. Model., 157, 141, 10.1016/S0304-3800(02)00192-8
Zaneiwski, 2002, Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns, Ecol. Model., 157, 261, 10.1016/S0304-3800(02)00199-0
*Amar, 2004, Habitat predicts losses of red grouse to individual hen harriers, J. Appl. Ecol., 41, 305, 10.1111/j.0021-8901.2004.00890.x
*Cabeza, 2004, Combining probabilities of occurrence with spatial reserve design, J. Appl. Ecol., 41, 252, 10.1111/j.0021-8901.2004.00905.x
*Frair, 2004, Removing GPS collar bias in habitat selection studies, J. Appl. Ecol., 41, 201, 10.1111/j.0021-8901.2004.00902.x
*Heikken, 2004, Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic, J. Appl. Ecol., 41, 824, 10.1111/j.0021-8901.2004.00938.x