Special modes of corrosion under physiological and simulated physiological conditions

Acta Biomaterialia - Tập 4 Số 3 - Trang 468-476 - 2008
Sannakaisa Virtanen1, I. Milošev2,3, Enrique Gómez‐Barrena4, Rihard Trebše3, Jari Salo5, Yrjö T. Konttinen6,7,8
1Institute for Surface Science and Corrosion, Department of Materials Science (WW-4), University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
2Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
3Orthopaedic Hospital Valdoltra, Jadranska c. 31, 6280 Ankaran, Slovenia
4Servicio de Cirugía Ortopédica y Traumatología, Fundación “Jiménez Díaz”, Avda. Reyes Católicos 2, E-28040 Madrid, Spain
5Töölö Hospital, Helsinki University Central Hospital, Topeliuksenkatu 5, 00029 HUS, Helsinki, Finland
6Coxa, Hospital for Joint Replacement, Tampere, Finland
7Institute of Clinical Medicine, Department of Medicine, University of Helsinki, Finland
8ORTON Orthopaedic Hospital of the Invalid Foundation, Helsinki, Finland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ratner, 2004

Williams DF. Biofunctionality and Biocompatibility. In: Cahn RW, Haasen P, Kramer EJ, editors. Materials science and technology. A comprehensive treatment. vol. 14: Medical and dental materials. Weinheim: VCH; 1992. p. 2–26.

Castner, 2002, Biomedical surface science: foundations to frontiers, Surface Sci, 500, 28, 10.1016/S0039-6028(01)01587-4

Kasemo, 2002, Biological surface science, Surface Sci, 500, 656, 10.1016/S0039-6028(01)01809-X

Fraker AC. Corrosion of metallic implants and prosthesis devices. In: ASTM metals handbook (9th ed.) vol. 13. Corrosion. Metals Park, OH: ASM International; 1987, p. 1324–35.

Leclerc MF. Surgical implants. In: ASTM metals handbook (9th ed.) vol. 2. Metals Park, OH: ASM International; 1987, p. 164–80.

Jacobs, 1990, Corrosion of metal orthopaedic implants, J Bone Joint Surg, 80-A, 268

Steinemann, 1996, Metal implants and surface reactions, Injury, 27, SC16, 10.1016/0020-1383(96)89027-9

Schultze, 2000, Stability, reactivity and breakdown of passive films. Problems of recent and future research, Electrochim Acta, 45, 2499, 10.1016/S0013-4686(00)00347-9

Schmuki, 2002, From Bacon to barriers: a review on the passivity of metals and alloys, J Solid State Electrochem, 6, 145, 10.1007/s100080100219

Milošev, 2000, Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy, Biomaterials, 21, 2103, 10.1016/S0142-9612(00)00145-9

Milošev, 2000, The behavior of stainless steels in physiological solution containing complexing agent studied by X-ray photoelectron spectroscopy, J Biomed Mater Res, 52, 404, 10.1002/1097-4636(200011)52:2<404::AID-JBM22>3.0.CO;2-Z

Milošev, 2003, The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution, Electrochim Acta, 48, 2767, 10.1016/S0013-4686(03)00396-7

Oyane, 2003, Preparation and assessment of revised simulated body fluids, J Biomed Mat Res, 65A, 188, 10.1002/jbm.a.10482

Yan, 2007, Biotribocorrosion of CoCrMo orthopaedic implant materials: assessing the formation and effect of the biofilm, Tribol Int, 40, 1492, 10.1016/j.triboint.2007.02.019

Minovič, 2003, The influence of complexing agent and proteins on the corrosion of stainless steels and their metallic components, J Mater Sci-Mater Med, 14, 69, 10.1023/A:1021505621388

Milošev I. The effect of complexing agents on the electrochemical behaviour of orthopaedic stainless steel in physiological solution. J Appl Electrochem 1002;32:311–20.

Omanović, 1999, Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel, Langmuir, 15, 8315, 10.1021/la990474f

Yang, 1994, Competitive binding to chromium, cobalt and nickel to serum proteins, Biomaterials, 15, 262, 10.1016/0142-9612(94)90049-3

Khan, 1999, The corrosion behaviour of Ti–6Al–4V, Ti–6Al–7Nb and Ti–13Nb–13Zr in protein solution, Biomaterials, 20, 631, 10.1016/S0142-9612(98)00217-8

Contu, 2002, Characterization of implant materials in fetal bovine serum and sodium sulphate by electrochemical impedance spectroscopy. I. Mechanically polished samples, J Biomed Mater Res, 62, 412, 10.1002/jbm.10329

Hsu, 2004, Electrochemical corrosion properties of Ti–6Al–4V implant alloy in biological environment, Mater Sci Eng, A 380, 100, 10.1016/j.msea.2004.03.069

Hench, 1975, Biomaterials: the interfacial problem, Adv Biomed Eng, 5, 35, 10.1016/B978-0-12-004905-9.50007-4

Willert, 1996, Crevice corrosion of cemented titanium alloy stems in total hip replacements, Clin Orthop Related Res, 333, 51, 10.1097/00003086-199612000-00006

Konttinen, 2001, Acid attack and cathepsin K in bone resorption around total hip replacement prosthesis, J Bone Miner Res, 16, 1780, 10.1359/jbmr.2001.16.10.1780

Salvati, 1998, Wear: osteolysis related to metallic debris, 333

Gonzalez Della Valle, 2006, Metallic shedding, surface finish changes, and extensive femoral osteolysis in the loose Spectron EF stem, Clin Orthop Related Res, 442, 165, 10.1097/01.blo.0000181145.01306.f9

Brien, 1992, Metal levels in cemented total hip arthroplasty. A comparison of well-fixed and loose implants, Clin Orthop Related Res, 276, 66, 10.1097/00003086-199203000-00010

Sedriks, 1996

Swiontkowski, 2001, Cutaneous metal sensitivity in patients with orthopaedic injuries, J Orthop Trauma, 15, 86, 10.1097/00005131-200102000-00002

Williams, 1981, The properties and clinical uses of cobalt–chromium alloys, vol. I, 99

Asphahani AI. Corrosion of cobalt base alloys. In: ASM Metals Handbook. (9th ed.) vol. 13. Corrosion. Metals Park, OH: ASM International; 1987. p. 658–68.

Crook, 2000, Cobalt alloys, 717

Della Valle, 2005, Late fatigue fracture of a modern cemented forged cobalt chrome stem for total hip arthroplasty: a report of 10 cases, J Arthroplasty, 20, 1084, 10.1016/j.arth.2005.03.038

Schenk, 2001, The corrosion properties of titanium and titanium alloys, 145

Pan, 1994, Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen-peroxide, J Biomed Mater Res, 28, 113, 10.1002/jbm.820280115

Pan, 1996, Electrochemcial impedance spectroscopy study of the passive oxide film on titanium for implant application, Electrochim Acta, 41, 1143, 10.1016/0013-4686(95)00465-3

Ruzickova M, Hildebrand, H, Virtanen S. Z Phys Chem 2005;219:1447–59.

Buly, 1992, Titanium wear debris in failed cemented total hip arthroplasty. An analysis of 71 cases, J Arthroplasty, 7, 315, 10.1016/0883-5403(92)90056-V

La Budde, 1994, Particulate titanium and cobalt–chrome metallic debris in failed total knee arthroplasty. A quantitative histologic analysis, J Arthroplasty, 9, 291, 10.1016/0883-5403(94)90084-1

Salvati, 1995, Complications of femoral and acetabular modularity, Clin Orthop Related Res, 319, 85

Zsklarska-Smialowska Z. Pitting corrosion of metals. Houston, TX: National Association of Corrosion Engineers; 1986.

Hodgson, 2004, Passive and transpassive behaviour of CoCrMo in simulated biological solutions, Electrochim Acta, 49, 2167, 10.1016/j.electacta.2003.12.043

Burstein, 2005, The effect of temperature on the nucleation of corrosion pits on titanium in Ringer’s physiological solution, Biomaterials, 26, 245, 10.1016/j.biomaterials.2004.02.023

Virtanen, 2004, Metastable and stable pitting corrosion of titanium in halide solutions, Corrosion, 60643

Burstein, 1995, Observations of localized instability of passive titanium in chloride solution, Electrochim Acta, 40, 1881, 10.1016/0013-4686(95)00126-Y

Souto, 1996, A preliminary investigation into the microscopic depassivation of passive titanium implant materials in vitro, J Mater Sci Mater Medicine, 7, 337, 10.1007/BF00154545

Burstein, 2004, Origins of pitting corrosion, Corros Eng Sci Techol, 39, 25, 10.1179/147842204225016859

Mickay, 1985, An electrochemical investigation of localized corrosion on titanium in chloride environments, Corrosion, 41, 52, 10.5006/1.3581969

Schutz RW, Thomas DE. Corrosion of titanium and titanium alloys. In: Metals handbook (9th ed.) vol. 13. Metals Park, OH: ASM International; 1987. p. 669–706.

Brown, 1995, Fretting corrosion accelerates crevice corrosion of modular hip tapers, J Appl Biomater, 6, 19, 10.1002/jab.770060104

Gilbert, 1993, In vivo corrosion of modular hip prosthesis components in mixed and similar metal combination. The effect of crevice, stress, motion and alloy coupling, J Biomed Mat Res, 27, 1533, 10.1002/jbm.820271210

Khan, 1999, Conjoint corrosion and wear in titanium alloys, Biomaterials, 20, 765, 10.1016/S0142-9612(98)00229-4

Windler, 2003, Investigation into wear-induced corrosion of orthopedic implant materials, 211

Duisabeau, 2004, Environmental effect on fretting of metallic materials for orthopaedic implants, Wear, 256, 805, 10.1016/S0043-1648(03)00522-2

Barril, 2005, Electrochemical effects on the fretting corrosion behaviour of Ti6Al4V in 0.9% sodium chloride solution, Wear, 259, 282, 10.1016/j.wear.2004.12.012

Khan, 1996, In-vitro corrosion and wear of titanium alloys in the biological environment, Biomaterials, 17, 2117, 10.1016/0142-9612(96)00029-4

Goldberg, 1997, Electrochemical response of CoCrMo to high-speed fracture of its metal oxide using an electrochemical scratch test method, J Biomed Mater Res, 37, 421, 10.1002/(SICI)1097-4636(19971205)37:3<421::AID-JBM13>3.0.CO;2-E

Hanawa, 1998, Repassivation of titanium and surface oxide film regenerated in simulated bioliquid, J Biomed Mat Res, 40, 530, 10.1002/(SICI)1097-4636(19980615)40:4<530::AID-JBM3>3.0.CO;2-G

Sargeant, 2007, Hip implants – paper VI – ion concentrations, Mater Design, 28, 155, 10.1016/j.matdes.2005.05.018

Hanawa, 2004, Metal ion release from metal implants, Mater Sci Eng, C24, 745, 10.1016/j.msec.2004.08.018

Okazaki, 2005, Comparison of metal release from various metallic biomaterials in vitro, Biomaterials, 26, 11, 10.1016/j.biomaterials.2004.02.005

Okazaki, 2004, Comparison of metal concentrations in rat tibia tissues with various metallic implants, Biomaterials, 25, 5913, 10.1016/j.biomaterials.2004.01.064

Merritt, 1995, Release of hexavalent chromium from corrosion of stainless steel and cobalt–chromium alloys, J Biomed Mat Res, 29, 627, 10.1002/jbm.820290510

Davies, 2005, Metal-specific differences in levels of DNA damage caused by synovial fluid recovered at revision arthroplasty, J Bone Joint Surg Br, 87-B, 1439, 10.1302/0301-620X.87B10.16541

Brodner, 2003, Serum cobalt levels after metal-on-metal total hip arthroplasty, J Bone Joint Surg Am, 85-A, 2168, 10.2106/00004623-200311000-00017

Lhotka, 2003, Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements, J Orthop Res, 21, 189, 10.1016/S0736-0266(02)00152-3

Keel, 2004, Massive wear of an incompatible metal-on-metal articulation in total hip arthroplasty, J Arthroplasty, 19, 638, 10.1016/j.arth.2003.12.076

Mears, 1975, The use of dissimilar metals in surgery, J Biomed Mat Res, 6, 133, 10.1002/jbm.820090417

Mansfeld F, Lee CC, Kovacs P. Application of electrochemical impedance spectroscopy (EIS) to the evaluation of the corrosion behavior of implant materials. In: Kovacs P, Istephanous NS, editors. Compatibility of biomedical implants, Pennington, NJ: The Electrochemical Society; 1994. p. 59–72.

Salvati, 1994, The contribution of metallic debris to osteolysis, Orthopedics, 17, 763, 10.3928/0147-7447-19940901-05

Lieberman, 1994, An analysis of the head–neck taper interface in retrieved hip prostheses, Clin Orthop Related Res, 300, 162, 10.1097/00003086-199403000-00021

Yerby, 1996, Corrosion at the interface. A possible solution to cobalt–chrome heads on titanium alloy stems, J Arthroplasty, 11, 157, 10.1016/S0883-5403(05)80010-5

Reclaru, 2002, Pitting, crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material, Biomaterials, 23, 3479, 10.1016/S0142-9612(02)00055-8

Serhan, 2004, Is galvanic corrosion between titanium alloy and stainless steel spinal implant a clinical concern?, The Spine Journal, 4, 379, 10.1016/j.spinee.2003.12.004