Special forms and the distribution of practical numbers

Acta Mathematica Academiae Scientiarum Hungarica - Tập 160 - Trang 405-411 - 2019
X.-H. Wu1
1School of Mathematical Sciences, East China Normal University, Shanghai, P.R. China

Tóm tắt

A positive integer n is called practical if every positive integer $$m \leq n$$ can be written as a sum of distinct divisors of n. For any integers $$a, b, k > 0$$, we show that if $$2 \nmid a$$, then there are infinitely many nonnegative integers m such that $$am^{k} + bm^{k-1}$$ is practical. Let qn denote the n-th practical number. Further, when $$n \geq 7$$, we prove that $$\sqrt{q_{n}+1} - \sqrt{q_n} < \frac{1}{2} $$ and there are at least two practical numbers between n2 and (n + 1)2.

Tài liệu tham khảo

Andrica, D.: Note on a conjecture in prime number theory. Studia Univ. Babes-Bolyai Math. 31, 44–48 (1986) G. H. Hardy and E. M. Wright, Unsolved Problems Concerning Primes, See §2.8 and Appendix §3 inAn Introduction to the Theory of Numbers, 5th edition, Oxford University Press (1979), pp. 19, 415–416 Hausman, M., Shapiro, H.: On practical numbers. Comm. Pure Appl. Math. 37, 705–713 (1984) Margenstern, M.: Théorie, observations et conjectures. J. Number Theory 37, 1–36 (1991) Melfi, G.: On two conjectures about practical numbers. J. Number Theory 56, 205–210 (1996) L. Oppermann, Om vor Kundskab om Primtallenes maengde mellem givne Graendser, in: Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbejder (1882), pp. 169–179 Pintz, J.: Landau's problems on primes. J. Théory Nombres Bordeaux 22, 357–404 (2009) N. J. A. Sloane, Sequence A014085. in: The On-Line Encyclopedia of Integer Sequences N. J. A. Sloane, Sequence A050216, in: The On-Line Encyclopedia of Integer Sequences Srinivasan, A.K.: Practical numbers. Curr. Sci. 6, 179–180 (1948) Stewart, B.M.: Sums of distinct divisors. Amer. J. Math. 76, 779–785 (1954) M. Visser, Strong version of Andrica's conjecture, preprint (2019), arXiv:1812.02762v2 L.-Y. Wang and Z.-W. Sun, On practical numbers of some special forms, preprint (2018), arXiv:1809.01532v1