Spatiotemporally continuous estimates of daily 1-km PM2.5 concentrations and their long-term exposure in China from 2000 to 2020
Tài liệu tham khảo
Bai, 2022, LGHAP: the Long-term Gap-free High-resolution Air Pollutant concentration dataset, derived via tensor-flow-based multimodal data fusion, Earth Syst. Sci. Data, 14, 907, 10.5194/essd-14-907-2022
Bi, 2019, Impacts of snow and cloud covers on satellite-derived PM2.5 levels, Rem. Sens. Environ., 221, 665, 10.1016/j.rse.2018.12.002
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Brokamp, 2018, Predicting daily urban fine particulate matter concentrations using a random forest model, Environ. Sci. Technol., 52, 4173, 10.1021/acs.est.7b05381
Buchard, 2017, The MERRA-2 aerosol reanalysis, 1980 onward. Part II: evaluation and case studies, J. Clim., 30, 6851, 10.1175/JCLI-D-16-0613.1
Burnett, 2018, Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter, Proc. Natl. Acad. Sci. USA, 115, 9592, 10.1073/pnas.1803222115
Cao, 2012, Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city, Environ. Health Perspect., 120, 373, 10.1289/ehp.1103671
Chen, 2021, Using lidar and historical similar meteorological fields to evaluate the impact of anthropogenic control on dust weather during COVID-19, Front. Environ. Sci., 9, 10.3389/fenvs.2021.806094
Chen, 2022, Estimation of atmospheric PM10 concentration in China using an interpretable deep learning model and top-of-the-atmosphere reflectance data from China's new generation geostationary meteorological satellite, FY-4A, J. Geophys. Res. Atmos., 127
Chen, 2022, Obtaining vertical distribution of PM2.5 from CALIOP data and machine learning algorithms, Sci. Total Environ., 805, 10.1016/j.scitotenv.2021.150338
Chen, 2023, Causes of the unexpected slowness in reducing winter PM2.5 for 2014–2018 in Henan Province, Environ. Pollut., 319, 10.1016/j.envpol.2022.120928
Chudnovsky, 2013, Spatial scales of pollution from variable resolution satellite imaging, Environ. Pollut., 172, 131, 10.1016/j.envpol.2012.08.016
Dominici, 2006, Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases, JAMA, 295, 1127, 10.1001/jama.295.10.1127
Dong, 2022, Decomposing PM2.5 air pollution rebounds in Northern China before COVID-19, Environ. Sci. Pollut. Control Ser., 29, 28688, 10.1007/s11356-021-17889-2
Fang, 2016, Satellite-based ground PM2.5 estimation using timely structure adaptive modeling, Rem. Sens. Environ., 186, 152, 10.1016/j.rse.2016.08.027
Geng, 2021, Tracking air pollution in China: near real-time PM2.5 retrievals from multisource data fusion, Environ. Sci. Technol., 55, 12106, 10.1021/acs.est.1c01863
Guo, 2017, Impact of diurnal variability and meteorological factors on the PM2.5-AOD relationship: implications for PM2.5 remote sensing, Environ. Pollut., 221, 94, 10.1016/j.envpol.2016.11.043
Habre, 2014, The effects of PM2.5 and its components from indoor and outdoor sources on cough and wheeze symptoms in asthmatic children, J. Expo. Sci. Environ. Epidemiol., 24, 380, 10.1038/jes.2014.21
He, 2021, Satellite-derived 1-km estimates and long-term trends of PM2.5 concentrations in China from 2000 to 2018, Environ. Int., 156, 10.1016/j.envint.2021.106726
He, 2021, The spatiotemporal relationship between PM2.5 and aerosol optical depth in China: influencing factors and implications for satellite PM2.5 estimations using MAIAC aerosol optical depth, Atmos. Chem. Phys., 21, 18375, 10.5194/acp-21-18375-2021
He, 2023, Spatiotemporal high-resolution imputation modeling of aerosol optical depth for investigating its full-coverage variation in China from 2003 to 2020, Atmos. Res., 281, 10.1016/j.atmosres.2022.106481
He, 2021, Spatiotemporal assessment of PM2.5 concentrations and exposure in China from 2013 to 2017 using satellite-derived data, J. Clean. Prod., 286, 10.1016/j.jclepro.2020.124965
Hough, 2021, Gaussian Markov random fields improve ensemble predictions of daily 1 km PM2.5 and PM10 across France, Atmos. Environ., 264, 10.1016/j.atmosenv.2021.118693
Hu, 2017, Estimating PM2.5 concentrations in the conterminous United States using the random forest approach, Environ. Sci. Technol., 51, 6936, 10.1021/acs.est.7b01210
Huang, 2018, Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain, Environ. Pollut., 242, 675, 10.1016/j.envpol.2018.07.016
Jiang, 2021, Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model, Atmos. Res., 248, 10.1016/j.atmosres.2020.105146
Levy, 2013, The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech. Discuss, 6, 159
Li, 2017, India is overtaking China as the world's largest emitter of anthropogenic sulfur dioxide, Sci. Rep., 7, 1
Li, 2017, Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: methods and assessment, Atmos. Environ., 152, 477, 10.1016/j.atmosenv.2017.01.004
Liang, 2020, The 17-y spatiotemporal trend of PM2.5 and its mortality burden in China, Proc. Natl. Acad. Sci. USA, 117, 25601, 10.1073/pnas.1919641117
Liang, 2018, MAIAC-based long-term spatiotemporal trends of PM2.5 in Beijing, China, Sci. Total Environ., 616–617, 1589, 10.1016/j.scitotenv.2017.10.155
Lin, 2016, Estimation of long-term population exposure to PM2.5 for dense urban areas using 1-km MODIS data, Rem. Sens. Environ., 179, 13, 10.1016/j.rse.2016.03.023
Liu, 2022, Criteria air pollutants and hospitalizations of a wide spectrum of cardiovascular diseases: a nationwide case-crossover study in China, Eco-Environ. Health, 1, 204, 10.1016/j.eehl.2022.10.002
Liu, 2019, Evaluation and comparison of multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue aerosol products over China, Atmos. Chem. Phys., 19, 8243, 10.5194/acp-19-8243-2019
Lv, 2017, Daily estimation of ground-level PM2.5 concentrations at 4km resolution over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground observations, Sci. Total Environ., 580, 235, 10.1016/j.scitotenv.2016.12.049
Lyapustin, 2018, MODIS Collection 6 MAIAC algorithm, Atmos. Meas. Tech., 11, 10.5194/amt-11-5741-2018
Ma, 2022, A review of statistical methods used for developing large-scale and long-term PM2.5 models from satellite data, Rem. Sens. Environ., 269, 10.1016/j.rse.2021.112827
Ma, 2016, Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013, Environ. Health Perspect., 124, 184, 10.1289/ehp.1409481
Martins, 2017, Validation of high‐resolution MAIAC aerosol product over South America, J. Geophys. Res. Atmos., 10.1002/2016JD026301
Meng, 2021, Estimating PM2.5 concentrations in Northeastern China with full spatiotemporal coverage, 2005-2016, Rem. Sens. Environ., 253, 10.1016/j.rse.2020.112203
Peng, 2009, Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution, Environ. Health Perspect., 117, 957, 10.1289/ehp.0800185
Pope, 2006, Health effects of fine particulate air pollution: lines that connect, J. Air Waste Manag. Assoc., 56, 709, 10.1080/10473289.2006.10464485
Provençal, 2017, Evaluation of PM2.5 surface concentration simulated by version 1 of the NASA's MERRA aerosol reanalysis over Israel and taiwan, Aerosol Air Qual. Res., 17, 253, 10.4209/aaqr.2016.04.0145
Randles, 2017, The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation, J. Clim., 30, 6823, 10.1175/JCLI-D-16-0609.1
Rose, 2021
Song, 2022, Combining Himawari-8 AOD and deep forest model to obtain city-level distribution of PM2.5 in China, Environ. Pollut., 297, 10.1016/j.envpol.2022.118826
Stafoggia, 2019, Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model, Environ. Int., 124, 170, 10.1016/j.envint.2019.01.016
van Donkelaar, 2021, Monthly global estimates of fine particulate matter and their uncertainty, Environ. Sci. Technol., 55, 15287, 10.1021/acs.est.1c05309
Wang, 2019, Aggravating O3 pollution due to NOx emission control in eastern China, Sci. Total Environ., 677, 732, 10.1016/j.scitotenv.2019.04.388
Wei, 2021, Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications, Rem. Sens. Environ., 252, 10.1016/j.rse.2020.112136
Xiao, 2017, Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China, Rem. Sens. Environ., 199, 437, 10.1016/j.rse.2017.07.023
Xiao, 2021, Separating emission and meteorological contributions to long-term PM2.5 trends over eastern China during 2000–2018, Atmos. Chem. Phys., 21, 9475, 10.5194/acp-21-9475-2021
Xue, 2019, Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000-2016: a machine learning method with inputs from satellites, chemical transport model, and ground observations, Environ. Int., 123, 345, 10.1016/j.envint.2018.11.075
Yang, 2022, Geographical and temporal encoding for improving the estimation of PM2.5 concentrations in China using end-to-end gradient boosting, Rem. Sens. Environ., 269, 10.1016/j.rse.2021.112828
Zhong, 2021, PM2.5 reductions in Chinese cities from 2013 to 2019 remain significant despite the inflating effects of meteorological conditions, One Earth, 4, 448, 10.1016/j.oneear.2021.02.003
Zhang, 2018, Factor analysis for aerosol optical depth and its prediction from the perspective of land-use change, Ecol. Indicat., 93, 458, 10.1016/j.ecolind.2018.05.026