Giải pháp sóng du lịch và sóng cô lập theo không gian-thời gian cho phương trình Schrödinger phi tuyến tổng quát với phi tuyến đơn và đôi theo định luật công suất

Springer Science and Business Media LLC - Tập 93 - Trang 2389-2397 - 2018
Nikola Z. Petrović1
1Institute of Physics, University of Belgrade, Belgrade, Serbia

Tóm tắt

Chúng tôi tổng quát hóa các giải pháp đã được thu được trước đây cho phương trình Schrödinger phi tuyến tổng quát (NLSE) với phi tuyến bậc ba-bậc năm và hệ số phân phối để có được các giải pháp sóng du lịch và sóng cô lập theo không gian-thời gian cho NLSE với phi tuyến theo định luật công suất p-2p tổng quát, trong đó p là một số thực dương tùy ý (mô hình bậc ba-bậc năm là trường hợp đặc biệt cho $$p=2$$). Ngoài ra, có thể loại bỏ số mũ thấp, tạo ra các giải pháp sóng du lịch và sóng cô lập theo không gian-thời gian cho NLSE với phi tuyến theo định luật công suất duy nhất với bậc dương thực tùy ý, mô hình hóa nhiều hệ thống quan trọng bao gồm khí Fermi siêu lỏng.

Từ khóa

#phương trình Schrödinger phi tuyến #giải pháp sóng #sóng cô lập #phi tuyến bậc ba-bậc năm #phi tuyến theo định luật công suất

Tài liệu tham khảo

Akhmediev, N., Ankiewicz, A.: Solitons. Chapman and Hall, London (1997) Kivshar, Y., Agrawal, G.: Optical Solitons, from Fibers to Photonic Crystals. Academic, New York (2003) Hasegawa, A., Matsumoto, M.: Optical Solitons in Fibers. Springer, New York (2003) Malomed, B.: Soliton Management in Periodic Systems. Springer, New York (2006) Zhong, W.P., et al.: Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. A 78, 023821 (2008) Belić, M., et al.: Analytical light bullet Solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation. Phys. Rev. Lett. 101, 0123904 (2008) Petrović, N., et al.: Exact spatiotemporal wave and soliton solutions to the generalized (3+1)-dimensional Schrödinger equation for both normal and anomalous dispersion. Opt. Lett. 34, 1609 (2009) Petrović, N., et al.: Modulation stability analysis of exact multidimensional solutions to the generalized nonlinear Schrödinger equation and the Gross-Pitaevskii equation using a variational approach. Opt. Exp. 23, 10616 (2015) Petrović, N., et al.: Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order. Phys. Rev. E 83, 026604 (2011) Hong-Yu, W., et al.: Self-similar solutions of variable-coefficient cubic-quintic nonlinear Schrdinger equation with an external potential. Commun. Theor. Phys. (Beijing, China) 54, 55 (2010) Towers, I., et al.: Stability of spinning ring solitons of the cubicquintic nonlinear Schrdinger equation. Phys. Lett. A 288, 292 (2001) Schürmann, H.W.: Traveling-wave solutions of the cubic-quintic nonlinear Schrdinger equation. Phys. Rev. E 54, 4313 (1996) Liu, X.B., et al.: Exact self-similar wave solutions for the generalized (3+1)-dimensional cubic-quintic nonlinear Schröinger [sic] equation with distributed coefficients. Opt. Commun. 285, 779 (2012) Dai, C., et al.: Chirped and chirp-free self-similar cnoidal and solitary wave solutions of the cubic-quintic nonlinear Schrödinger equation with distributed coefficients. Opt. Commun. 283, 1489 (2010) Belmonte-Beitia, J., Cuevas, J.: Solitons for the cubic-quintic nonlinear Schrödinger equation with time- and space-modulated coefficients. J. Phys. A. 42, 165201 (2009) He, J.R., Li, H.M.: Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with different external potentials. Phys. Rev. E 83, 066607 (2011) Hao, R., et al.: A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 236, 79 (2004) Zhou, Q., et al.: Optical solitons in media with time-modulated nonlinearities and spatiotemporal dispersion. Nonlinear Dyn. 80, 983 (2015) Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58, 345 (2009) Biswas, A., Khalique, C.M.: Stationary solutions for nonlinear dispersive Schrdingers equation. Nonlinear Dyn. 63, 623 (2011) Eslami, M., Mirzazadeh, M.: Optical solitons with Biswas-Milović equation for power law and dual-power law nonlinearities. Nonlinear Dyn. 83, 731 (2016) Micallef, R., et al.: Optical solitons with power-law asymptotics. Phys. Rev. E 54, 2936 (1996) Biswas, A.: 1-soliton solution of (1+2)-dimensional nonlinear Schrödinger equation in dual-power law media. Phys. Lett. A 372, 5941 (2008) Biswas, A.: Soliton-soliton interaction with dual-power law nonlinearity. Appl. Math. Comput. 198, 605 (2008) Bouzida, A., et al.: Chirped optical solitons in nano optical fibers with dual-power law nonlinearity. Optik 142, 77 (2017) Mirzazadeh, M., et al.: Topological solitons of resonant nonlinear Schödinger’s equation with dual-power law nonlinearity by G/G-expansion technique. Optik 125, 5480 (2014) Ali, A., et al.: Soliton solutions of the nonlinear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis. Optik 145, 79 (2017) Biswas, A.: Optical solitons with time-dependent dispertion, nonlinearity and attenuation in a power-law media. Commun. Nonlinear Sci. Numer. Simulat. 14, 1078 (2009) Wazwaz, A.: Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and a power law nonlinearity. Math. Comput. Model. 43, 178 (2006) Mirzazadeh, M., et al.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277 (2015) Malomed, B.A., et al.: Spatio-temporal optical solitons. J. Opt. B 7, R53 (2005) Koonprasert, S., Punpocha, M.: More exact solutions of Hirota–Ramani partial differential equations by applying F-Expansion method and symbolic computation. Glob. J. Pure Appl. Math. 12(3), 1903 (2006) Xu, S.L., et al.: Exact solutions of the (2+1)-dimensional quintic nonlinear Schrdinger equation with variable coefficients. Nonlinear Dyn. 80, 583 (2015) Adhikari, S.: Nonlinear Schrödinger equation for a superfluid Fermi gas in the BCS-BEC crossover. Phys. Rev. A 77, 045602 (2008)