Mô hình không gian-thời gian về động lực bùng phát đợt đầu và đợt hai của COVID-19 tại Đức

Biomechanics and Modeling in Mechanobiology - Tập 21 - Trang 119-133 - 2021
Dorothee Lippold1, Andreas Kergaßner1, Christian Burkhardt1, Matthias Kergaßner2, Jonas Loos2, Sarah Nistler1, Paul Steinmann1, Dominik Budday1, Silvia Budday1
1Department of Mechanical Engineering, Institute of Applied Mechanics, Friedrich-Alexander-University Erlangen Nürnberg, Erlangen, Germany
2Department of Computer Science, Hardware-Software-Co-Design, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany

Tóm tắt

Đại dịch COVID-19 đã khiến cả thế giới phải sống trong hồi hộp suốt năm qua. Ở hầu hết các quốc gia liên bang như Đức, những điều kiện thay đổi theo từng địa phương yêu cầu quyết định cấp bang hoặc quận để thích nghi với động lực bệnh tật. Tuy nhiên, điều này đòi hỏi phải có hiểu biết sâu sắc về động lực bùng phát ở quy mô trung gian giữa các mô hình tác nhân ở quy mô vi mô và các mô hình toàn cầu ở quy mô vĩ mô. Ở đây, chúng tôi sử dụng một mô hình mạng SIQRD đã được tái tham số hóa, mà tính đến các quyết định chính trị địa phương để dự đoán sự tiến triển không gian-thời gian của đại dịch tại Đức ở mức độ quận. Mô hình tối ưu của chúng tôi tái tạo chính xác tổng số nhiễm và tử vong theo từng bang như đã báo cáo bởi Viện Robert Koch và dự đoán sự phát triển cho từng quận với độ chính xác thuyết phục trong cả hai đợt vào mùa xuân và mùa thu năm 2020. Chúng tôi chứng minh tác động áp đảo của các hạt nhiễm cục bộ và xác định các biện pháp hiệu quả để làm giảm sự lây lan nhanh chóng. Mô hình của chúng tôi có tiềm năng lớn để hỗ trợ các nhà quyết định ở cấp bang và cộng đồng thực hiện chiến lược tốt nhất cho con đường phía trước trong những tháng tới.

Từ khóa

#COVID-19 #mô hình SIQRD #động lực bùng phát #Đức #lây lan bệnh tật.

Tài liệu tham khảo

An der Heiden M, Buchholz U (2020) Modellierung von beispielszenarien der sars-cov-2-epidemie 2020 in deutschland. Unter Mitarbeit des Robert Koch-Instituts Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, Wang M (2020) Presumed asymptomatic carrier transmission of covid-19. JAMA Balcan D, Colizza V, Goncalves B, Hu H, Ramasco JJ, Vespignani A (2009) Multiscale mobility networks and the spatial spreading of infectious diseases. Proc Natl Acad Sci USA 106:21484–21489. https://doi.org/10.1073/pnas.0906910106 Balcan D, Goncalves B, Hu H, Ramasco JJ, Colizza V, Vespignani A (2010) Modeling the spatial spread of infectious diseases: the global epidemic and mobility computational model. J Comput Sci 1:132–145. https://doi.org/10.1016/j.jocs.2010.07.002 Cacciapaglia G, Cot C, Sannino F (2020) Second wave covid-19 pandemics in Europe: a temporal playbook. Sci Rep 10(1):15514 Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, y Piontti, A.P., Mu, K., Rossi, L., Sun, K., et al (2020) The effect of travel restrictions on the spread of the 2019 novel coronavirus (covid-19) outbreak. Science 368:395–400 Colizza V, Barrat A, Barthélemy M, Vespignani A (2006) The role of the airline transportation network in the prediction and predictability of global epidemics. Proc Natl Acad Sci U SA 103(7):2015–2020 Cordes J, Castro MC (2020) Spatial analysis of covid-19 clusters and contextual factors in new york city. Spatial and Spatio-temporal Epidemiology 34:100355. https://doi.org/10.1016/j.sste.2020.100355http://www.sciencedirect.com/science/article/pii/S1877584520300332 Dorigatti I, Okell L, Cori A, Imai N, Baguelin M, Bhatia S, Boonyasiri A, Cucunubá Z, Cuomo-Dannenburg G, FitzJohn R et al (2020) Report 4: severity of 2019-novel coronavirus (ncov). Imperial College London, London Dudel C, Riffe T, Acosta E, van Raalte AA, Myrskyla M (2020) Monitoring trends and differences in covid-19 case fatality rates using decomposition methods: Contributions of age structure and age-specific fatality. medRxiv Eubank S, Guclu H, Kumar VA, Marathe MV, Srinivasan A, Toroczkai Z, Wang N (2004) Modelling disease outbreaks in realistic urban social networks. Nature 429(6988):180–184 Fang Y, Nie Y, Penny M (2020) Transmission dynamics of the covid-19 outbreak and effectiveness of government interventions: a data-driven analysis. J Med Virol Felbermayr G, Hinz J, Chowdhry S (2020) Apres-ski: The spread of coronavirus from Ischgl through Germany. Covid Econ Vetted and Real-Time Pap 22:177–204 German R, Djanatliev A, Maile L, Bazan P, Hackstein H (2020) Modeling exit strategies from covid-19 lockdown with a focus on antibody tests. medRxiv Helwig S (2010) Particle swarms for constrained optimization Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653 Hethcote H, Zhien M, Shengbing L (2002) Effects of quarantine in six endemic models for infectious diseases. Math Biosci 180(1–2):141–160 Johns Hopkins University (2020) Covid-19 dashboard by the center for systems science and engineering. Online. https://coronavirus.jhu.edu/map.html. Accessed 29 June 2020 Jumpen W, Wiwatanapataphee B, Wu Y, Tang I (2009) A SEIQR model for pandemic influenza and its parameter identification. Int J Pure Appl Math 52(2):247–265 Kang D, Choi H, Kim JH, Choi J (2020) Spatial epidemic dynamics of the covid-19 outbreak in china. Int J Infect Dis 94:96–102. https://doi.org/10.1016/j.ijid.2020.03.076 Keimer A, Pflug L (2020) Modeling infectious diseases using integro-differential equations: Optimal control strategies for policy decisions and applications in Covid-19. Res Gate. 10.13140/RG.2.2.10845.44000 Kergaßner A, Burkhardt C, Lippold D, Kergaßner M, Pflug L, Budday D, Steinmann P, Budday S (2020) Memory-based meso-scale modeling of Covid-19: County-resolved timelines in Germany. Comput Mech 1–11 Kergaßner A, Burkhardt C, Lippold D, Nistler S, Kergaßner M, Steinmann P, Budday D, Budday S (2020) Meso-scale modeling of COVID-19 spatio-temporal outbreak dynamics in Germany. medRxiv (2020). https://doi.org/10.1101/2020.06.10.20126771. https://www.medrxiv.org/content/early/2020/06/17/2020.06.10.20126771 Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, containing papers of a mathematical and physical character 115(772):700–721 Kleuter B (2007) Generalized parameter identification for finite viscoelasticity. doctoralthesis. Technische Universität Kaiserslautern (http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-21268) Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Eggo RM, Sun F, Jit M, Munday JD et al (2020) Early dynamics of transmission and control of covid-19: a mathematical modelling study. Lancet Infect, Dis Landratsamt Tirschenreuth: Amtsblatt des landkreises tirschenreuth, nr. 12 a. online (2020). https://www.kreis-tir.de/fileadmin/user_upload/Kreisorgane/Amtsblatt/Amtsblatt_2020/Amtsblatt_12_a.pdf. Last accessed June 6, 2020 Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J (2020) Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sars-cov-2). Science 368(6490):489–493 Linka K, Peirlinck M, Costabal FS, Kuhl E (2020) Outbreak dynamics of covid-19 in europe and the effect of travel restrictions. Comput Methods Biomech Biomed Engin 1–8. https://doi.org/10.1080/10255842.2020.1759560 ( PMID: 32367739) Linka K, Rahman P, Goriely A, Kuhl E (2020) Is it safe to lift covid-19 travel bans? the newfoundland story. Comput Mech 66(5):1081–1092. https://doi.org/10.1007/s00466-020-01899-x Linka K, Goriely A, Kuhl E (2020) Global and local mobility as a barometer for covid-19 dynamics. medRxiv. https://doi.org/10.1101/2020.06.13.20130658 (https://www.medrxiv.org/content/early/2020/06/16/2020.06.13.20130658) Linka K, Peirlinck M, Kuhl E (2020) The reproduction number of covid-19 and its correlation with public health interventions. medRxiv. https://doi.org/10.1101/2020.05.01.20088047 Lu H, Stratton CW, Tang YW (2020) Outbreak of pneumonia of unknown etiology in wuhan, china: The mystery and the miracle. J. Med. Virol. 92(4):401–402. https://doi.org/10.1002/jmv.25678https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25678 Ma S, Zhang J, Zeng M, Yun Q, Guo W, Zheng Y, Zhao S, Wang MH, Yang Z (2020) Epidemiological parameters of coronavirus disease 2019: a pooled analysis of publicly reported individual data of 1155 cases from seven countries. medRxiv Maier BF, Brockmann D (2020) Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science 368(6492):742–746. https://doi.org/10.1126/science.abb4557https://science.sciencemag.org/content/368/6492/742 Mollalo A, Vahedi B, Rivera KM (2020) Gis-based spatial modeling of covid-19 incidence rate in the continental united states. Science of The Total Environment 728:138884. https://doi.org/10.1016/j.scitotenv.2020.138884http://www.sciencedirect.com/science/article/pii/S0048969720324013 National Institute of Infectious Diseases Japan.: Field briefing: Diamond princess covid-19 cases, 20 feb update. online. https://www.niid.go.jp/niid/en/2019-ncov-e/9407-covid-dp-fe-01.html. Last accessed June 1, 2020 Palomo S, Pender J, Massey W, Hampshire RC (2020) Flattening the curve: Insights from queueing theory. arXiv Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Epidemic processes in complex networks. Rev Mod Phys 87(3):925 Pedersen MG, Meneghini M (2020) Quantifying undetected covid-19 cases and effects of containment measures in italy. ResearchGate Preprint (online 21 March 2020) DOI 10 (2020) Peirlinck M, Costabal FS, Linka K, Kuhl E (2020) Outbreak dynamics of covid-19 in china and the united states. Biomech Model Mechanobiol 27:1–15 Prasse B, Achterberg MA, Ma L, Van Mieghem P (2020) Network-based prediction of the 2019-ncov epidemic outbreak in the chinese province hubei. arXiv preprint arXiv:2002.04482 Reiner RC, Barber RM, Collins JK, Zheng P, Adolph C, Albright J, Antony CM , Aravkin AY , Bachmeier, SD , Bang-Jensen, B , Bannick MS , Bloom S ,Carter A , Castro E , Causey K , Chakrabarti S , Charlson FJ , Cogen, RM , Combs, E , Dai, X , Dangel, WJ , Earl, L , Ewald SB , Ezalarab M , Ferrari AJ , Flaxman A , Frostad JJ , Fullman N , Gakidou E, Gallagher J, Glenn SD, Goosmann EA, He J, Henry NJ, Hulland EN, Hurst B, Johanns C, Kendrick PJ, Khemani A, Larson SL, Lazzar-Atwood A, LeGrand KE, Lescinsky H, Lindstrom A, Linebarger E, Lozano R, Ma R, Månsson J, Magistro B, Herrera AMM, Marczak LB, Miller-Petrie MK, Mokdad AH, Morgan JD, Naik P, Odell CM, O’Halloran JK, Osgood-Zimmerman AE, Ostroff SM, Pasovic M, Penberthy L, Phipps G, Pigott DM, Pollock I, Ramshaw RE, Redford SB, Reinke G, Rolfe S, Santomauro DF, Shackleton JR, Shaw DH, Sheena BS, Sholokhov A , Sorensen RJD , Sparks G , Spurlock EE , Subart ML , Syailendrawati R , Torre A E , Troeger CE , Vos T , Watson A , Watson S , Wiens KE , Woyczynski L , Xu L , Zhang J , Hay SI, Lim SS, Murray CJL, Team ICF (2021) Modeling covid-19 scenarios for the united states Nat Med 27(1):94–105 https://doi.org/10.1038/s41591-020-1132-9 Robert Koch Institute (2020a) Covid-19-dashboard. https://experience.arcgis.com/experience/478220a4c454480e823b17327b2bf1d4/page/page_1. Last accessed January 20, 2021 Robert Koch Institute (2020b) Laborbasierte surveillance von sars-cov-2 - weekly report. https://ars.rki.de/Content/COVID19/Main.aspx. Accessed 20 Jan 2021 Robert Koch Institute (2020c) Theoretical test capacities. https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Testzahl.html Schmitt M, Wanka R (2015) Particle swarm optimization almost surely finds local optima. Theor. Comput. Sci. 561, 57 – 72 (2015). https://doi.org/10.1016/j.tcs.2014.05.017. http://www.sciencedirect.com/science/article/pii/S0304397514004150. Genetic and Evolutionary Computation Streeck H, Schulte B, Kuemmerer B, Richter E, Hoeller T, Fuhrmann C, Bartok E, Dolscheid R, Berger M, Wessendorf L, Eschbach-Bludau M, Kellings A, Schwaiger A, Coenen M, Hoffmann P, Noethen M, Eis-Huebinger AM, Exner M, Schmithausen R, Schmid M, Hartmann G (2020) Infection fatality rate of sars-cov-2 infection in a german community with a super-spreading event. medRxiv (2020). https://doi.org/10.1101/2020.05.04.20090076. https://www.medrxiv.org/content/early/2020/06/02/2020.05.04.20090076 World Health Organization (2020) Virtual press conference on covid-19 - Access 11 March 2020 Xu S, Li Y (2020) Beware of the second wave of covid-19. The Lancet 395(10233):1321–1322 Yamazaki K, Wang X (2017) Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Math Biosci Eng 14(2):559–579 Yuan J, Li M, Lv G, Lu ZK (2020) Monitoring transmissibility and mortality of covid-19 in europe. Int. J. Infect. Dis. 95:311–315. https://doi.org/10.1016/j.ijid.2020.03.050http://www.sciencedirect.com/science/article/pii/S120197122030182X Zheng R, Xu Y, Wang W, Ning G, Bi Y (2020) Spatial transmission of covid-19 via public and private transportation in china. Travel Med Infect Dis 34:101626–101626 Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B (2020) Clinical course and risk factors for mortality of adult inpatients with covid-19 in wuhan, china: a retrospective cohort study. Lancet 395(10229):1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3http://www.sciencedirect.com/science/article/pii/S0140673620305663