Spatiotemporal mapping of oxygen in a microbially-impacted packed bed using 19F Nuclear magnetic resonance oximetry

Journal of Magnetic Resonance - Tập 293 - Trang 123-133 - 2018
Jeffrey W. Simkins, Philip S. Stewart, Joseph D. Seymour

Tài liệu tham khảo

Hall-Stoodley, 2004, Bacterial biofilms: from the Natural environment to infectious diseases, Nat. Rev. Micro., 2, 95, 10.1038/nrmicro821 Smith, 2016, Biofilms on glacial surfaces: hotspots for biological activity, npj Biofilms Microbiomes, 2, 16008, 10.1038/npjbiofilms.2016.8 Percival, 2012, A review of the scientific evidence for biofilms in wounds, Wound Repair Regen., 20, 647, 10.1111/j.1524-475X.2012.00836.x Herzberg, 2007, Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure, J. Membr. Sci., 295, 11, 10.1016/j.memsci.2007.02.024 Townsin, 2003, The ship hull fouling penalty, Biofouling, 19, 9, 10.1080/0892701031000088535 Rajasekar, 2010, Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines, Appl. Microbiol. Biotechnol., 85, 1175, 10.1007/s00253-009-2289-9 Edwards, 2013, Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals, Appl. Microbiol. Biotechnol., 97, 9909, 10.1007/s00253-013-5216-z Adav, 2008, Aerobic granular sludge: Recent advances, Biotechnol. Adv., 26, 411, 10.1016/j.biotechadv.2008.05.002 Stewart, 2008, Physiological heterogeneity in biofilms, Nat. Rev. Microbiol., 6, 199, 10.1038/nrmicro1838 Rasmussen, 1998, Microelectrode measurements of local mass transport rates in heterogeneous biofilms, Biotechnol. Bioeng., 59, 302, 10.1002/(SICI)1097-0290(19980805)59:3<302::AID-BIT6>3.0.CO;2-F Lewandowski, 1993, NMR and Microelectrode Studies of Hydrodynamics and Kinetics in Biofilms, Biotechnol. Prog., 9, 40, 10.1021/bp00019a006 Davies, 1942, Microelectrodes for measuring local oxygen tension in animal tissues, Rev. Sci. Instrum., 13, 524, 10.1063/1.1769961 Silver, 1973, Problems in the investigation of tissue oxygen microenvironment, 343 Eidelberg, 1988, 19F NMR imaging of blood oxygenation in the brain, Magn. Reson. Med., 6, 344, 10.1002/mrm.1910060312 Mason, 1996, Hexafluorobenzene: A sensitive F-19 NMR indicator of tumor oxygenation, NMR Biomed., 9, 125, 10.1002/(SICI)1099-1492(199605)9:3<125::AID-NBM405>3.0.CO;2-F Liu, 2011, Quantitative tissue oxygen measurement in multiple organs using 19F MRI in a rat model, Magn. Reson. Med., 66, 1722, 10.1002/mrm.22968 Yu, 2013, New frontiers and developing applications in (19)F NMR, Progress Nucl. Magnetic Resonance Spectrosc., 70, 25, 10.1016/j.pnmrs.2012.10.001 Raichle, 1998, Behind the scenes of functional brain imaging: A historical and physiological perspective, Proc. Natl. Acad. Sci. U S A, 95, 765, 10.1073/pnas.95.3.765 Delpuech, 1979, Fluorocarbons as oxygen carriers. 1. An NMR study of oxygen solutions in hexafluorobenzene, J. Chem. Phys., 70, 2680, 10.1063/1.437853 Hunjan, 1998, Regional tumor oximetry: F-19 NMR spectroscopy of hexafluorobenzene, Int. J. Radiat. Oncol. Biol. Phys., 41, 161, 10.1016/S0360-3016(98)00020-0 Seymour, 1997, Generalized approach to NMR analysis of flow and dispersion in porous media, AIChE J., 43, 2096, 10.1002/aic.690430817 Seymour, 2004, Anomalous fluid transport in porous media induced by biofilm growth, Phys. Rev. Lett., 93, 198103, 10.1103/PhysRevLett.93.198103 Hornemann, 2009, T2–T2 exchange in biofouled porous media, Diff. Fund., 10, 1.1 Johns, 2000, Local transitions in flow phenomena through packed beds identified by MRI, AIChE J., 46, 2151, 10.1002/aic.690461108 Manz, 1999, Correlations between dispersion and structure in porous media probed by nuclear magnetic resonance, Phys. Fluids, 11, 259, 10.1063/1.869876 Liaw, 1996, Characterization of fluid distributions in porous media by NMR techniques, AIChE J., 42, 538, 10.1002/aic.690420223 Song, 2008, Magnetic resonance in porous media: Recent progress, J. Chem. Phys., 128, 02B618, 10.1063/1.2833581 Blümich, 2011, Small-scale instrumentation for nuclear magnetic resonance of porous media, New J. Phys., 13, 015003, 10.1088/1367-2630/13/1/015003 Vogt, 2013, Permeability of a growing biofilm in a porous media fluid flow analyzed by magnetic resonance displacement-relaxation correlations, Biotechnol. Bioeng., 110, 1366, 10.1002/bit.24803 Wakimoto, 2004, Quantitative biofilm assay using a microtiter plate to screen for enteroaggregative Escherichia coli, Am. J. Trop. Med. Hygiene, 71, 687, 10.4269/ajtmh.2004.71.687 Sadovskaya, 2005, Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A, Infect. Immun., 73, 3007, 10.1128/IAI.73.5.3007-3017.2005 Nöth, 1999, 19F-MRI in vivo determination of the partial oxygen pressure in perfluorocarbon-loaded alginate capsules implanted into the peritoneal cavity and different tissues, Magn. Reson. Med., 42, 1039, 10.1002/(SICI)1522-2594(199912)42:6<1039::AID-MRM8>3.0.CO;2-N Nöth, 2004, In vivo determination of tumor oxygenation during growth and in response to carbogen breathing using 15C5-loaded alginate capsules as fluorine-19 magnetic resonance imaging oxygen sensors, Int. J. Radiat. Oncol. Biol. Phys., 60, 909, 10.1016/j.ijrobp.2004.07.671 Smidsrød, 1990, Alginate as immobilization matrix for cells, Trends Biotechnol., 8, 71, 10.1016/0167-7799(90)90139-O Cheetham, 1979, Physical studies on cell immobilization using calcium alginate gels, Biotechnol. Bioeng., 21, 2155, 10.1002/bit.260211202 Taipa, 1993, Comparison of glucose fermentation by suspended and gel-entrapped yeast cells: An in vivo nuclear magnetic resonance study, Biotechnol. Bioeng., 41, 647, 10.1002/bit.260410607 Duff, 1985, Microencapsulation technology: a novel method for monoclonal antibody production, Trends Biotechnol., 3, 167, 10.1016/0167-7799(85)90116-7 Robinson, 1986, Factors affecting the growth characteristics of alginate-entrapped Chlorella, Enzyme Microb. Technol., 8, 729, 10.1016/0141-0229(86)90160-2 Pabst, 2016, Gel-entrapped Staphylococcus aureus bacteria as models of biofilm infection exhibit growth in dense aggregates, oxygen limitation, antibiotic tolerance, and heterogeneous gene expression, Antimicrob. Agents Chemother., 60, 6294, 10.1128/AAC.01336-16 Thomas, 1994, Correlation between radiosensitivity, percentage hypoxic cells and pO2 measurements in one rodent and two human tumor xenografts, Radiat. Res., 139, 1, 10.2307/3578725 Ruiz-Cabello, 2011, Fluorine (19F) MRS and MRI in biomedicine, NMR Biomed., 24, 114, 10.1002/nbm.1570 R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, Madison, USA, 1960. Han, 1996, Temperature dependence of oxygen diffusion in H2O and D2O, J. Phys. Chem., 100, 5597, 10.1021/jp952903y Stewart, 1998, A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms, Biotechnol. Bioeng., 59, 261, 10.1002/(SICI)1097-0290(19980805)59:3<261::AID-BIT1>3.0.CO;2-9 Maxwell, 1881, vol. 1 Dulieu, 1999, Encapsulation and immobilization techniques, 3 Sønderholm, 2017, Pseudomonas aeruginosa aggregate formation in an alginate bead model system exhibits in vivo-like characteristics, Appl. Environ. Microbiol., 83, e00113, 10.1128/AEM.00113-17 Wilkes, 2006