Spatiotemporal distribution, abundance, and host interactions of two invasive vectors of arboviruses, Aedes albopictus and Aedes japonicus, in Pennsylvania, USA
Tóm tắt
Aedes albopictus and Aedes japonicus, two invasive mosquito species in the United States, are implicated in the transmission of arboviruses. Studies have shown interactions of these two mosquito species with a variety of vertebrate hosts; however, regional differences exist and may influence their contribution to arbovirus transmission. We investigated the distribution, abundance, host interactions, and West Nile virus infection prevalence of Ae. albopictus and Ae. japonicus by examining Pennsylvania mosquito and arbovirus surveillance data for the period between 2010 and 2018. Mosquitoes were primarily collected using gravid traps and BG-Sentinel traps, and sources of blood meals were determined by analyzing mitochondrial cytochrome b gene sequences amplified in PCR assays. A total of 10,878,727 female mosquitoes representing 51 species were collected in Pennsylvania over the 9-year study period, with Ae. albopictus and Ae. japonicus representing 4.06% and 3.02% of all collected mosquitoes, respectively. Aedes albopictus was distributed in 39 counties and Ae. japonicus in all 67 counties, and the abundance of these species increased between 2010 and 2018. Models suggested an increase in the spatial extent of Ae. albopictus during the study period, while that of Ae. japonicus remained unchanged. We found a differential association between the abundance of the two mosquito species and environmental conditions, percent development, and median household income. Of 110 Ae. albopictus and 97 Ae. japonicus blood meals successfully identified to species level, 98% and 100% were derived from mammalian hosts, respectively. Among 12 mammalian species, domestic cats, humans, and white-tailed deer served as the most frequent hosts for the two mosquito species. A limited number of Ae. albopictus acquired blood meals from avian hosts solely or in mixed blood meals. West Nile virus was detected in 31 pools (n = 3582 total number of pools) of Ae. albopictus and 12 pools (n = 977 total pools) of Ae. japonicus. Extensive distribution, high abundance, and frequent interactions with mammalian hosts suggest potential involvement of Ae. albopictus and Ae. japonicus in the transmission of human arboviruses including Cache Valley, Jamestown Canyon, La Crosse, dengue, chikungunya, and Zika should any of these viruses become prevalent in Pennsylvania. Limited interaction with avian hosts suggests that Ae. albopictus might occasionally be involved in transmission of arboviruses such as West Nile in the region.
Tài liệu tham khảo
Campos GS, Bandeira AC, Sardi SI. Zika virus outbreak, Bahia, Brazil. Emerg Infect Dis. 2015;21(10):1885–6. https://doi.org/10.3201/eid2110.150847.
Lessler J, Chaisson LH, Kucirka LM, Bi Q, Grantz K, Salje H, et al. Assessing the global threat from Zika virus. Science. 2016; 353(6300). https://doi.org/10.1126/science.aaf8160.
Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2009;11:1177–85. https://doi.org/10.1016/j.micinf.2009.05.005.
Kraemer MUG, Sinka ME, Duda KA, Mylne A, Shearer FM, Brady OJ, et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci Data. 2015;2:150035. https://doi.org/10.1038/sdata.2015.35.
Hahn MB, Eisen L, McAllister J, Savage HM, Mutebi JP, Eisen RJ. Updated reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the United States, 1995–2016. J Med Entomol. 2016;54:1420–4. https://doi.org/10.1093/jme/tjx088.
Munstermann LE, Andreadis TG. Aedes japonicus in Connecticut. Vector Ecol Newsl. 1999;30:7–8.
Andreadis TG, Anderson JF, Munstermann LE, Wolfe RJ, Florin DA. Discovery, distribution, and abundance of the newly introduced mosquito Ochlerotatus japonicus (Diptera: Culicidae) in Connecticut, USA. J Med Entomol. 2001;38:774–9.
Peyton EL, Campbell SR, Candeletti TM, Romanowski M, Crans WJ. Aedes (Finlaya) japonicus japonicus (Theobold), a new introduction into the United States. J Am Mosq Control Assoc. 1999;15:238–41.
Fonseca DM, Campbell S, Crans WJ, Mogi M, Miyagi I, Toma T, et al. Aedes (Finlaya) japonicus (Diptera: Culicidae), a newly recognized mosquito in the United States: analyses of genetic variation in the United States and putative source populations. J Med Entomol. 2001;38:135–46.
Kaufman MG, Fonseca DM. Invasive biology of Aedes japonicus japonicus (Diptera: Culicidae). Annu Rev Entomol. 2014;59:31–49. https://doi.org/10.1146/annurev-ento-011613-162012.
Kampen H, Werner D. Out of the bush: the Asian bush mosquito Aedes japonicus japonicus (Theobold, 1901) (Diptera, Culicidae) becomes invasive. Parasit Vectors. 2014;7:1–10.
Bartlett-Healy K, Unlu I, Obenauer P, Highes T, Healy S, Crepeau TM, et al. Larval mosquito habitat utilization and community dynamics of Aedes albopictus and Aedes japonicus (Diptera: Culicidae). J Med Entomol. 2012;49(4):813–24. https://doi.org/10.1603/ME11031.
Egizi A, Kiser J, Abadam C, Fonseca DM. The hitchhiker’s guide to becoming invasive: exotic mosquitoes spread across a U.S. state by human transport not autonomous flight. Mol Ecol. 2016;25:3033–47. https://doi.org/10.1111/mec.13653.
Alto BW. Interspecific larval competition between invasive Aedes japonicus and native Aedes triseriatus (Diptera: Culicidae) and adult longevity. J Med Entomol. 2011;48:232–42. https://doi.org/10.1603/ME09252.
Leisnham PT, Juliano SA. Impacts of climate, land use, and biological invasion on the ecology of immature Aedes mosquitoes: implications for La Crosse emergence. EcoHealth. 2012;9:217–28. https://doi.org/10.1007/s10393-012-0773-7.
Kaufman MG, Stanuszek WW, Brouhard EA, Knepper RG, Walker ED. Establishment of Aedes japonicus japonicus and its colonization of container habitats in Michigan. J Med Entomol. 2012;49(6):1307–17.
Armistead JS, Arias JR, Nishimura N, Lounibos LP. Interspecific larval competition between Aedes albopictus and Aedes japonicus (Diptera: Culicidae) in northern Virginia. J Med Entomol. 2008;45:629–37.
Armistead JS, Nishimura N, Arias JR, Lounibos LP. Community ecology of container mosquitoes (Diptera: Culicidae) in Virginia following invasion by Aedes japonicus. J Med Entomol. 2012;49(6):1318–27.
Mogi M, Armruster PA, Nobuko T. Differences in responses to urbanization between invasive mosquitoes, Aedes japonicus japonicus (Diptera: Culicidae) and Aedes albopictus, in their native range. Japan J Med Entomol. 2020;57:104–12. https://doi.org/10.1093/jme/tjz145.
Ponlawat A, Harrington LC. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J Med Entomol. 2005;42:844–9. https://doi.org/10.1093/jmedent/42.5.844.
Sawabe K, Isawa H, Hoshino K, Sasaki T, Roychoudhury S, Higa Y, et al. Host-feeding habits of Culex pipiens and Aedes albopictus (Diptera: Culicidae) collected at the urban and suburban residential areas of Japan. J Med Entomol. 2010;47:442–50. https://doi.org/10.1093/jmedent/47.3.442.
Muñoz J, Eritja R, Alcaide M, Montalvo T, Soriguer RC, Figuerola J. Host-feeding patterns of native Culex pipiens and invasive Aedes albopictus mosquitoes (Diptera: Culicidae) in urban zones from Barcelona. Spain J Med Entomol. 2011;48:956–60. https://doi.org/10.1603/ME11016.
Kamgang B, Nchoutpouen E, Simard F, Paupy C. Notes on the blood-feeding behavior of Aedes albopictus (Diptera: Culicidae) in Cameroon. Parasit Vectors. 2012;5:57. https://doi.org/10.1186/1756-3305-5-57.
Egizi A, Healy SP, Fonseca DM. Rapid blood meal scoring in anthropophilic Aedes albopictus and application of PCR blocking to avoid pseudogenes. Infect Genet Evol. 2013;16:122–8. https://doi.org/10.1016/j.meegid.2013.01.008.
Faraji A, Egizi A, Fonseca DM, Unlu I, Crepeau T, Healy SP, et al. Comparative host feeding patterns of the Asian tiger mosquito, Aedes albopictus, in urban and suburban Northeastern USA and implications for disease transmission. PLoS Negl Trop Dis. 2014;8: e3037. https://doi.org/10.1371/journal.pntd.0003037.
Kek R, Hapuarachchi HC, Chung CY, Humaidi MB, Razak MA, Chiang S, et al. Feeding host range of Aedes albopictus (Diptera: Culicidae) demonstrates its opportunistic host-seeking behavior in rural Singapore. J Med Entomol. 2014;51:880–4. https://doi.org/10.1603/ME13213.
Kim H, Yu HM, Lim HW, Yang SC, Roh JY, Chang KS, et al. Host-feeding pattern and dengue virus detection of Aedes albopictus (Diptera: Culicidae) captured in an urban park in Korea. J Asia Pac Entomol. 2017;20:809–13. https://doi.org/10.1016/j.aspen.2017.05.007.
Niebylski ML, Savage HM, Nasci RS, Craig GB Jr. Blood hosts of Aedes albopictus in the United States. J Am Mosq Control Assoc. 1994;10:447–50.
Goodman H, Egizi A, Fonseca DM, Leisnham PT, LaDeau SL. Primary blood-hosts of mosquitoes are influenced by social and ecological conditions in a complex urban landscape. Parasit Vectors. 2018;11:218. https://doi.org/10.1186/s13071-018-2779-7.
Little EAH, Harriott OT, Akaratovic KI, Kiser JP, Abadam CF, Shepard JF, et al. Host interactions of Aedes albopictus, an invasive vector of arboviruses, in Virginia, USA. PLoS Negl Trop Dis. 2021;15(2): e0009173. https://doi.org/10.1371/journal.pntd.0009173.
Savage HM, Niebylski ML, Smith GC, Mitchell CJ, Craig GB. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) at a temperate North American site. J Med Entomol. 1993;30:27–34. https://doi.org/10.1093/jmedent/30.1.27.
Richards SL, Ponnusamy L, Unnasch TR, Hassan HK, Apperson CS. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. J Med Entomol. 2006;43:543–51. https://doi.org/10.1093/jmedent/43.3.543.
Valerio L, Marini F, Bongiorno G, Facchinelli L, Pombi M, Caputo B, et al. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome Province, Italy. Vector Borne Zoonotic Dis. 2010;10:291–4. https://doi.org/10.1089/vbz.2009.0007.
Sivan A, Shriram AN, Sunish IP, Vidhya PT. Host-feeding pattern of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in heterogeneous landscapes of South Andaman, Andaman and Nicobar Islands, India. Parasitol Res. 2015;114:3539–46. https://doi.org/10.1007/s00436-015-4634-5.
Little EAH, Diehler D, Leisnham PT, Jordan R, Wilson S, LaDeau SL. Socio-ecological mechanisms supporting high densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD. J Med Entomol. 2017;54:1183–92. https://doi.org/10.1093/jme/tjx103.
Apperson CS, Hassan HK, Harrison BA, Savage HM, Aspen SE, Farajollahi A, et al. Host feeding patterns of established and potential mosquito vectors of West Nile virus in the Eastern United States. Vector Borne Zoonotic Dis. 2004;4:71–82. https://doi.org/10.1089/15036604773083013.
Molaei G, Andreadis TG, Armstrong PM, Diuk-Wasser M. Host-feeding patterns of potential mosquito vectors in Connecticut, USA: Molecular analysis of bloodmeals from 23 species of Aedes, Anopheles, Culex, Coquillettidia, Psorophora, and Uranotaenia. J Med Entomol. 2008;45:1143–51.
Molaei G, Farajollahi A, Scott JJ, Gaugler R, Andreadis TG. Human bloodfeeding by the recently introduced mosquito, Aedes japonicus japonicus, and public health implications. J Am Mosq Control Assoc. 2009;25:210–4. https://doi.org/10.2987/09-0012.1.
Anderson JF, Armstrong PM, Misencik JK, Bransfield AB, Andreadis TG, Molaei G. Seasonal distribution, blood-feeding habits and viruses of mosquitoes in an open-faced quarry in Connecticut, 2010 and 2011. J Am Mosq Control Assoc. 2018;34:1–10.
Westby KM, Fritzen C, Paulsen D, Poindexter S, Moncayo AC. La Crosse encephalitis virus infection in field-collected Aedes albopictus, Aedes japonicus, and Aedes triseriatus in Tennessee. J Am Mosq Control Assoc. 2015;31:233–41. https://doi.org/10.2987/moco-31-03-233-241.1.
Damiens D, Ayrinhac A, Van Bortel W, Versteirt V, Dekoninck W, Hance T. Invasive process and repeated cross-sectional surveys of the mosquito Aedes japonicus japonicus establishment in Belgium. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0089358.
Harris MC, Dotseth EJ, Jackson BT, Zink SD, Marek PE, Kramer LD, et al. La Crosse virus in Aedes japonicus japonicus mosquitoes in the Appalachian region, United States. Emerg Infect Dis. 2015;21:646–9. https://doi.org/10.3201/eid2104.140734.
Williges E, Farajollahi A, Scott JJ, McCuiston LJ, Crans WJ, Gaugler R. Laboratory colonization of Aedes japonicus japonicus. J Am Mosq Control Assoc. 2008;24:591–3.
Schönenberger AC, Wagner S, Tuten HC, Schaffner F, Torgerson P, Furrer S, et al. Host preferences in host-seeking and blood-fed mosquitoes in Switzerland. Med Vet Entomol. 2016;30:39–52. https://doi.org/10.1111/mve.12155.
Gratz NG. Critical review of the vector status of Aedes albopictus. Med Vet Entomol. 2004;18:215–27. https://doi.org/10.1111/j.0269-283X.2004.00513.x.
Vanlandingham DL, Higgs S, Huang YJ. Aedes albopictus (Diptera: Culicidae) and mosquito-borne viruses in the United States. J Med Entomol. 2016;53:1024–8. https://doi.org/10.1093/jme/tjw025.
Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet. 2007;370:1840–6. https://doi.org/10.1016/S0140-6736(07)61779-6.
La Ruche G, Souarès Y, Armengaud A, Peloux-Petiot F, Delaunay P, Desprès P, et al. First two autochthonous dengue virus infections in metropolitan France, September 2010. Euro Surveill. 2010;15:19676. https://doi.org/10.2807/ese.15.39.19676-en.
Peng HJ, Lai HB, Zhang QL, Xu BY, Zhang H, Liu WH, et al. A local outbreak of dengue caused by an imported case in Dongguan China. BMC Public Health. 2012;12:83. https://doi.org/10.1186/1471-2458-12-83.
Grard G, Caron M, Mombo IM, Nkoghe D, Ondo SM, Jiolle D. Zika virus in Gabon (Central Africa)—2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis. 2014;8: e2681. https://doi.org/10.1371/journal.pntd.0002681.
Delisle E, Rousseau C, Broche B, Leparc-Goffart I, L’ambert G, Cochet A, et al. Chikungunya outbreak in Montpellier, France, September to October 2014. Euro Surveill. 2015;20:21108. https://doi.org/10.2807/1560-7917.es2015.20.17.21108.
Tsuda Y, Maekawa Y, Ogawa K, Itokawa K, Komagata O, Sasaki T, et al. Biting density and distribution of Aedes albopictus during the September 2014 outbreak of dengue fever in Yoyogi Park and the vicinity in Tokyo Metropolis, Japan. Jpn J Infect Dis. 2015;69:1–5. https://doi.org/10.7883/yoken.JJID.2014.576.
Takashimi I, Rosen L. Horizontal and vertical transmission of Japanese encephalitis virus by Aedes japonicus (Diptera: Culicidae). J Med Entomol. 1989;26:454–8.
Sardelis MR, Turell MJ, Andre RG. Laboratory transmission of La Crosse virus by Ochlerotatus j. japonicus (Diptera: Culicidae). J Med Entomol. 2002;39(4):635–9. https://doi.org/10.1603/0022-2585-39.4.635.
Turell MJ, O’Guinn ML, Dohm DJ, Jones JW. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol. 2001;38:130–4.
Sardelis MR, Turell MJ, Andre RG. Experimental transmission of St. Louis encephalitis virus by Ochlerotatus j. japonicus. J Am Mosq Control Assoc. 2003;19:159–62.
Sardelis MR, Dohm DJ, Pagac B, Andre RG, Turell MJ. Experimental transmission of eastern equine encephalitis virus by Ochlerotatus j. japonicus (Diptera: Culicidae). J Med Entomol. 2002;39:480–4.
Schaffner F, Vazeille M, Kaufmann C, Failloux A, Mathis A. Vector competence of Aedes japonicus for chikungunya and dengue viruses. J Eur Mosq Control Assoc. 2011;29:141–2.
Turell MJ, Byrd BD, Harrison BA. Potential for populations of Aedes j. japonicus to transmit Rift Valley fever virus in the USA. J Am Mosq Control Assoc. 2013;29:133–7. https://doi.org/10.2987/12-6316r.1.
Centers for Disease Control and Prevention (CDC). Update: West Nile virus activity—eastern United States, 2000. Morb Mortal Wkly Rep. 2000;49:1044–1047.
Lukacik G, Anand M, Shusas EJ, Howard JJ, Oliver J, Chen J, et al. West Nile virus surveillance in mosquitoes in New York State, 2000–2004. J Am Mosq Control Assoc. 2006;22:264–71.
DeCarlo CH, Campbell SC, Bigler LL, Mohammed HO. Aedes japonicus and West Nile virus in New York. J Am Mosq Control Assoc. 2020;36:261–4.
Yang F, Chan K, Marek PE, Armstrong PM, Liu P, Bova JE, et al. Cache Valley virus in Aedes japonicus japonicus mosquitoes, Appalachian Region, United States. Emerg Infect Dis. 2018;24:553–7.
LaDeau SL, Allan BF, Leisnham PT, Levy MZ. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct Ecol. 2015;29:889–901. https://doi.org/10.1111/1365-2435.12487.
Rothman SE, Jones JA, LaDeau SL, Leisnham PT. Higher West Nile virus infection in Aedes albopictus (Diptera: Culicidae) and Culex (Diptera: Culicidae) mosquitoes from lower income neighborhoods in urban Baltimore, MD. J Med Entomol. 2021;58:1424–8. https://doi.org/10.1093/jme/tjaa262.
McDonald E, Martin SW, Landry K, Gould CV, Lehman J, Fischer M, et al. West Nile virus and other domestic nationally notifiable arboviral diseases—United States, 2018. Morb Mortal Wkly Rep. 2019;68:673–8. https://doi.org/10.15585/mmwr.mm6831a1.
Darsie RF Jr, Ward RA. Identification and geographical distribution of the mosquitoes of North America, North of Mexico. 2nd ed. Gainesville, FL: Univ. Press of Florida Press; 2005. p. 1–383.
Darsie Jr. RF, Hutchinson ML. The mosquitoes of Pennsylvania. Technical Bulletin #2009-001. Penn Vector Control Assoc. 2009; 1–191.
Andreadis TG, Thomas MC, Shepard JJ. Identification guide to the mosquitoes of Connecticut. Bull Conn Agric Exp Stn. 2005;966:1–173.
Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, et al. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol. 2000;38:4066–71. https://doi.org/10.1128/JCM.38.11.4066-4071.2000.
Hull R, Nattanmai S, Kramer LD, Bernard KA, Tavakoli NP. A duplex real-time reverse transcriptase polymerase chain reaction assay for the detection of St. Louis encephalitis and eastern equine encephalitis viruses. Diagn Microbiol Infect Dis. 2008;62(3):272–9.
Lambert AJ, Nasci RS, Cropp BC, Martin DA, Rose BC, Russell BJ, et al. Nucleic acid amplification assays for detection of La Crosse virus RNA. J Clin Microbiol. 2005;43(4):1885–9.
Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck CR. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis. 2006;12:468–74.
Molaei G, Andreadis TG. Identification of avian- and mammalian-derived bloodmeals in Aedes vexans and Culiseta melanura (Diptera: Culicidae) and its implication for West Nile virus transmission in Connecticut, USA. J Med Entomol. 2006;43:1088–93.
Ngo KA, Kramer LD. Identification of mosquito bloodmeals using polymerase chain reaction (PCR) with order-specific primers. J Med Entomol. 2003;40:215–22.
Molaei G, Thomas MC, Muller T, Medlock J, Shepard JJ, Armstrong PM, et al. Dynamics of vector–host interactions in avian communities in four eastern equine encephalitis virus foci in the Northeastern US. PLoS Negl Trop Dis. 2016;10(1): e0004347. https://doi.org/10.1371/journal.pntd.0004347.
Gu W, Lampman R, Novak R. Assessment of arbovirus vector infection rates using variable size pooling. Med Vet Entomol. 2004;18:200–4.
DeFelice N, Little E, Campbell SR, Shaman J. Ensemble forecast of human West Nile virus cases and mosquito infection rates. Nat Commun. 2017; 8. https://doi.org/10.1038/ncomms14592.
R Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Pedersen K, Wang E, Weaver SC, Wolf PC, Randall AR, Van Why KR, et al. Serologic evidence of various arboviruses detected in White-tailed deer (Odocoileus virginianus) in the United States. Am J Trp Med Hyg. 2017;97:319–23.
Farajollahi A, Gates R, Crans W, Komar N. Serologic evidence of West Nile virus and St. Louis encephalitis virus infections in white-tailed deer (Odocoileus virginianus) from New Jersey, 2001. Vector Borne Zoonotic Dis. 2004;4:379–83.
Rocheleau JP, Michel P, Lindsay LR, Drebot M, Dibernardo A, Ogden NH, et al. Risk factors associated with seropositivity to California serogroup viruses in humans and pet dogs, Quebec, Canada. Epidemiol Infect. 2018;146:1167–76.
Gill CM, Beckham JD, Piquet AL, Tyler KL, Pastula DM. Five emerging neuroinvasive arboviral diseases: Cache Valley, eastern equine encephalitis, Jamestown Canyon, Powassan, and Usutu. Semin Neurol. 2019;39:419–27.
Almeida APG, Baptista SSSG, Sousa CAGC, Novo MTLM, Ramos HC, Panella NA, et al. Bioecology and vectorial capacity of Aedes albopictus (Diptera: Culicidae) in Macao, China, in relation to dengue virus transmission. J Med Entomol. 2005;42:419–428.
Becker B, Leisnham PT, LaDeau SL. A tale of two city blocks: Differences in immature and adult mosquito abundances between socioeconomically different urban blocks in Baltimore (Maryland, USA). Int J Environ Res Public Health. 2014;11:3256–70. https://doi.org/10.3390/ijerph110303256.
Eastwood G, Donnellycolt AK, Shepard JJ, Misencik MJ, Bedoukian R, Cole L, et al. Evaluation of novel trapping lures for monitoring exotic and native container-inhabiting Aedes spp. (Diptera: Culicidae) mosquitoes. J Med Entomol. 2019;57:534–41. https://doi.org/10.1093/jme/tjz200.
Holick J, Kyle A, Ferraro W, Delaney RR, Iwaseczk M. Discovery of Aedes albopictus infected with West Nile virus in southeastern Pennsylvania. J Am Mosq Control Assoc. 2002;18:131.
LaDeau SL, Leisnham PT, Biehler D, Bodner D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int J Environ Res Public Health. 2013;10:1505–26. https://doi.org/10.3390/ijerph10041505.