Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images
Tóm tắt
Từ khóa
Tài liệu tham khảo
Antonić O, J K, Marki A, Bukovec D (2001) Spatio-temporal interpolation of climatic variables over large region of complex terrain using neural networks. Ecol Model 138(1–3):255–263
Banerjee S, Carlin CP, Gelfand AE (eds) (2004) Hierarchical modeling and analysis for spatial data. Monographs on statistics and applied probability, Chapman & Hall/CRC, Boca Raton, FL
Baum B, Platnick S (2006) Introduction to MODIS cloud products. In: Earth science satellite remote sensing, pp 74–91
Bivand R, Pebesma E, Rubio V (2008) Applied spatial data analysis with R. Use R Series, Springer, Heidelberg
Boer EPJ, de Beurs KM, Hartkamp AD (2001) Kriging and thin plate splines for mapping climate variables. International Journal of Applied Earth Observation and Geoinformation 3(2):146–154
Böhner J, Antonić O (2008) Land-surface parameters specific to topo-climatology. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications, vol 33. Elsevier, pp 195–226
Carrera-Hernández JJ, Gaskin SJ (2007) Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico. J Hydrol 336(3–4):231–249
Cheval S, Dumitrescu A (2009) The July urban heat island of Bucharest as derived from MODIS images. Theor Appl Climatol 96(1):145–153
Conrad O (2007) SAGA—Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen. PhD thesis, University of Göttingen, Göttingen
Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous united states. Int J Climatol 28(15):2031–2064
Gelfand AE, Banerjee S, Gamerman D (2005) Spatial process modelling for univariate and multivariate dynamic spatial data. Environmetrics 16(5):465–479
Hartkamp AD, De Beurs K, Stein A, White JW (1999) Interpolation techniques for climate variables, geographic information systems, vol 99-01. CIMMYT Natural Resources Group, Mexico
Hengl T (2009) A practical guide to geostatistical mapping. University of Amsterdam, Amsterdam
Heuvelink GBM, Griffith DA (2010) Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany. Geogr Anal 42:161–179
Hiebl J, Auer I, Böhm R, Schöner W, Maugeri M, Lentini G, Spinoni J, Brunetti M, Nanni T, Perčec Tadić M, Bihari Z, Dolinar M, Müller-Westermeier G (2009) A high-resolution 1961–1990 monthly temperature climatology for the greater Alpine region. Meteorologische Zeitschrift 18:507–530
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978
Huang HC, Martinez F, Mateu J, Nontes F (2007) Model comparison and selection for stationary space-time models. Comput Stat Data Anal 51:4577–96
Hudson G, Wackernagel H (1994) Mapping temperature using kriging with external drift: theory and an example from scotland. Int J Climatol 14(1):77–91
Huerta G, Sanso B, Stroud JR (2004) A spatiotemporal model for Mexico City ozone levels. Appl Stat 53(2):231–248
Jarvis CH, Stuart N (2001) A comparison among strategies for interpolating maximum and minimum daily air tempeatures. Part II: the interaction between number of guiding variables and the type of interpolation method. J Appl Meteorol 40(6):1075–1084
Jeffrey SJ, Carter JO, Moodie KB, Beswick AR (2001) Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ Model Softw 16(4):309–330
Jost G, Heuvelink GBM, Papritz A (2005) Analysing the space-time distributions of soil water storage of a forest ecosystem using spatio-temporal kriging. Geoderma 128(3):258–273
Kebaili Bargaoui Z, Chebbi A (2009) Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. J Hydrol 365(1–2):56–73
Kyriakidis PC, Journel AG (1999) Geostatistical space–time models: a review. Math Geol 31(6):651–684
Liszka L (2004) Cognitive information processing in space physics and astrophysics, astronomy and astrophysics series, vol 13. Pachart Publishing House, Tucson, AR
Neteler M (2005) Time series processing of MODIS satellite data for landscape epidemiological applications. International Journal of Geoinformatics 1(1):133–138
Neteler M (2010) Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens 2(1):333–351
Pebesma EJ (2006) The role of external variables and GIS databases in geostatistical analysis. Trans GIS 10(4):615–632
Pebesma E (2011) Classes and methods for spatio-temporal data in R: the spacetime package. Institute for Geoinformatics, University of Münster, http://cran.r-project.org/web/packages/spacetime/vignettes/spacetime.pdf
Pebesma EJ, de Jong K, Briggs DJ (2007) Visualising uncertain spatial and spatio-temporal data under different scenarios: an air quality example. Int J Geogr Inf Sci 21(5):515–527
Perčec Tadić M (2010) Gridded Croatian climatology for 1961–1990. Theor Appl Climatol January:1434–4483
Prigent C (2010) Precipitation retrieval from space: an overview. Comptes Rendus Geosciences 342(3–4):380–389
Schuurmans J, Bierkens M, Pebesma E, Uijlenhoet R (2007) Automatic prediction of high-resolution daily rainfall fields for multiple extents: the potential of operational radar. J Hydrometeorol 8:1204–1224
Snepvangers JJJC, Heuvelink GBM, Huisman JA (2003) Soil water content interpolation using spatio-temporal kriging with external drift. Geoderma 112(3–4):253–271
Spadavecchia L, Williams M (2009) Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? Agric For Meteorol 149(6–7):1105–1117
van Leeuwen T, Frank D, Jin Y, Smyth P, Goulden M, van der Werf G, Randerson J (2011) Optimal use of land surface temperature data to detect changes in tropical forest cover. J Geophys Res 116:G02002