Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích không-thời gian về thành phần công nghiệp với IVIID: một giao diện phân tích trực quan tương tác cho sự đa dạng công nghiệp
Tóm tắt
Cấu trúc công nghiệp của các địa phương đã thu hút được sự quan tâm đáng kể vì niềm tin rộng rãi rằng sự đa dạng công nghiệp giúp bảo vệ các nền kinh tế địa phương khỏi những cú sốc kinh tế. Kết quả là, một loạt các bộ công cụ và chỉ số đã được phát triển với mục tiêu cải thiện việc nắm bắt động lực cấu thành của các khu vực. Mặc dù hữu ích, một nhược điểm chính của những chỉ số này là tính tĩnh của chúng, điều này giới hạn tính khả dụng của những chỉ số này trong một bối cảnh không-thời gian. Bài báo này cung cấp tổng quan và ứng dụng của một giao diện được gọi là công cụ trực quan tương tác cho các chỉ số về sự đa dạng công nghiệp, đây là một công cụ phân tích trực quan được phát triển đặc biệt để phân tích và trực quan hóa các đo lường địa phương về thành phần công nghiệp cho dữ liệu khu vực. Tổng quan này sẽ bao gồm một cuộc thảo luận về các tính năng chính của nó, cũng như một minh chứng cho tính khả dụng của giao diện trong việc khám phá các câu hỏi xoay quanh sự đa dạng và tính chất động của cấu thành qua không gian và thời gian. Một trong những điểm tập trung của minh chứng này là nhấn mạnh cách mà tính tương tác và chức năng truy vấn của giao diện này vượt qua một số rào cản trong việc hiểu rõ cấu thành qua không gian và thời gian mà các bộ công cụ trước đây và các phương pháp tĩnh so sánh đã không thể giải quyết.
Từ khóa
#cấu trúc công nghiệp #đa dạng công nghiệp #phân tích không-thời gian #trực quan hóa #dữ liệu khu vựcTài liệu tham khảo
Alwang J, Siegel PB (1994) Portfolio models and planning for export diversification: Malawi, Tanzania, and Zimbabwe. J Dev Stud 30(2):405–422
Anselin L (1995) Local indicators of spatial association–LISA. Geogr Anal 27(2):93–115
Anselin L (2003a) An introduction to spatial regression analysis in R. University of Illinois, Urbana-Champaign
Anselin L (2003b) An introduction to EDA with GeoDa. Spatial Analysis Laboratory, Department of Agricultural and Consumer Economics, UIUC
Anselin L (2012) Space-time mapping. Spatial Autocorrelation, Chicago
Anselin L, Bao S (1997) Exploratory spatial data analysis linking SpaceStat and ArcView. Recent developments in spatial analysis—spatial statistics, behavioural modelling and computational intelligence pp 35–59
Anselin L, Dodson R, Hudak S (1993) Linking GIS and spatial data analysis in practice. Geogr Syst 1:3–23
Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38(1):5–22
Attaran M, Zwick M (1987) Entropy and other measures of industrial diversification. Q J Bus Econ 26(4):17–34
Bernat GA Jr, Repice ES (2000) Industrial composition of state earnings in 1958–1998. Surv Curr Bus 80(2):70
Bivand R (2002) Spatial econometrics functions in R: classes and methods. J Geogr Syst 4:405–421. doi:10.1007/s101090300096
Bivand R, Gebhardt A (2000) Implementing functions for spatial statistical analysis using the R language. J Geogr Syst 2:307–317
Block R, Block C (1995) Space, place and crime: hot spot areas and hot places of liquor-related crime. Crime Place 4(2):145–184
Bode E, Rey SJ (2006) The spatial dimension of economic growth and convergence. J Reg Sci 85(2):171–176
Brewer CA (2005) Designing better maps: a guide for GIS users. ESRI Press, California
Conroy M (1975) The concept and measurement of regional industrial diversification. South Econ J pp 492–505
Dissart J (2003) Regional economic diversity and regional economic stability: research results and agenda. Int Reg Sci Rev 26:423–446
Drucker J (2011) Regional industrial structure concentration in the United States: trends and implications. Econ Geogr 87(4):421–452
Drucker J, Feser E (2012) Regional industrial structure and agglomeration economies: an analysis of productivity in three manufacturing industries. Reg Sci Urban Econ 42(1-2):1–14
Duque J, Dev B, Betancourt A, Franco J (2011) ClusterPy: library of spatially constrained clustering algorithms. Version 0.9.9. RiSE-group (Research in Spatial Economics). EAFIT University.
Duranton G, Overman H (2008) Exploring the detailed location patterns of UK manufacturing industries using microgeographic data. J Reg Sci 48(1):213–243
Dykes J (1995) Pushing maps past their established limits: a unified approach to cartographic visualization. Innov GIS 3:177–87
Dykes J (1998) Cartographic visualization: exploratory spatial data analysis with local indicators of spatial association using TcI/Tk and cdv. J Roy Stat Soc Ser D (The Statistician) 47(3):485–497
Ellison G, Glaeser EL (1997) Geographic concentration in U.S. manufacturing industries: a Dartboard approach. J Polit Econ 105(5):889–927
Ellison G, Glaeser EL, Kerr W (2010) What causes industry agglomeration? Evidence from co-agglomeration patterns. Am Econ Rev 100:1195–1213
Everett B (1974) Cluster analysis. Heinemann Educational Books Ltd, London
Gahegan M, Takatsuka M, Wheeler M, Hardisty F (2000) Abstract GeoVISTA Studio: a geocomputational workbench. In: The Proceedings of the 5th international conference on GeoComputation
Geary R (1954) The contiguity ratio and statistical mapping. Inc Stat 5(3):115–146
Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206
Gomez-Rubio V, Ferrandiz J, Lopez A (2003) Detecting clusters of diseases with R. J Geogr Syst 7:189–206
Guo D, Chen J, MacEachren AM, Liao K (2006) A visualization system for space-time and multivariate patterns (VIS-STAMP). IEEE Trans Vis Comput Graph 12(6):1461–1474
Hägerstrand T (1970) What about people in regional science?. Papers Reg Sci 24(1):6–21
Haining R, Wise S, Ma J (2000) Designing and implementing software for spatial statistical analysis in a GIS environment. J Geogr Syst 2:257–286
Harvey J (1991) Modelling accessibility using space-time prism concepts within geographical information systems. Int J Geogr Inf Syst 5(3):287–301
Haslett J, Wills G, Unwin A (1990) SPIDER–interactive statistical tool for the analysis of spatially distributed data. Int J Geogr Inf Syst 4(3):285–296
Isard W, Azis IJ, Drennan MP, Miller RE, Saltzman S, Thorbecke E (1998) Methods of interregional and regional analysis. Ashgate, Aldershot
Jackson RW (1984) An evaluation of alternative measures of regional industrial diversification. Reg Stud 18(2):103–112
Janikas MV, Rey SJ (2005) Spatial clustering, inequality and income convergence. Reg Dev 21:45–64
Knox E, Bartlett M (1964) The detection of space-time interactions. J Roy Stat Soc Ser C (Appl Stat) 13(1):25–30
Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26(6):1481–1496
Kulldorff M, Rand K, Gherman G, Williams G, DeFrancesco D (1998) SaTScan v 2.1: software for the spatial and space-time scan statistics. National Cancer Institute, Bethesda
Kulldorff M, Heffernan R, Hartman J, Assunção R, Mostashari F (2005) A space–time permutation scan statistic for disease outbreak detection. PLoS Med 2(3):e59
Kwan M (1998) Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework. Geogr Anal 30(3):191–216
Kwan M (1999) Gender and individual access to urban opportunities: a study using space–time measures. Prof Geogr 51(2):211–227
LeSage J, Pace R (2004) Arc_mat, a toolbox for using arcview shape files for spatial econometrics and statistics. In: Egenhofer M, Freksa C, Miller H (eds) Geographic information science, lecture notes in computer science, vol 3234. Springer, Berlin pp 179–190. doi:10.1007/978-3-540-30231-5_12
Levine N (1999) CrimeStat: a spatial statistics program for the analysis of crime incident locations. In: The IV international conference on GeoComputation, Fredericksburg
Levine N (2006) Crime mapping and the Crimestat program. Geogr Anal 38(1):41–56
Levine N (2010) CrimeStat: a spatial statistics program for the analysis of crime incident locations(V 3.3). National Institute of Justice, Washington
Liu X, LeSage J (2010) Arc_mat: a matlab-based spatial data analysis toolbox. J Geogr Syst 12(1):69–87
López FA, Matilla-García M, Mur J, Marín MR (2011) Four tests of independence in spatiotemporal data. J Reg Sci 90(3):663–685
MacEachren A, Wachowicz M, Edsall R, Haug D, Masters R (1999) Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods. Int J Geogr Inf Sci 13(4):311–334
Maciejewski R, Pattah A, Ko S, Hafen R, Cleveland WS, Ebert DS (2013) Automated box-cox transformations for improved visual encoding. IEEE Trans Vis Comput Graph 19(1):130–140
Mack E, Grubesic TH, Kessler E (2007a) Indices of industrial diversity and regional economic composition. Growth Change 38(3):474–509
Mack E, Grubesic TH, Kessler E (2007b) Indices of industrial diversity and regional economic composition. Growth Change 38:474–509
Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220
Marcon E, Puech F (2010) Measures of the geographic concentration of industries: improving distance-based methods. J Econ Geogr 10(5):745–762
Markowitz H (1959) Portfolio selection: efficient diversification of investments. Wiley, New York
McBratney A, Gruijter J (2006) A continuum approach to soil classification by modified fuzzy k-means with extragrades. J Soil Sci 43(1):159–175
McIntosh J, Yuan M (2005) A framework to enhance semantic flexibility for analysis of distributed phenomena. Int J Geogr Inf Sci 19(10):999–1018
Moran P (1948) The interpretation of statistical maps. J Roy Stat Soc Ser B (Methodol) 10(2):243–251
Openshaw S (1994) Two exploratory space-time-attribute pattern analysers relevant to GIS. Spatial Anal GIS pp 83–104
Peuquet D (1994) It’s about time: A conceptual framework for the representation of temporal dynamics in geographic information systems. Ann Assoc Am Geogr 84(3):441–461
Peuquet D (2001) Making space for time: issues in space-time data representation. GeoInformatica 5(1):11–32
Peuquet D, Duan N (1995) An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. Int J Geogr Inf Syst 9(1):7–24
Rey S (1998) Technician needs assessment survey. Technical representative, San Diego Regional Economic Development Corporation
Rey S (2000) Identifying regional industrial clusters in the california economy: volume I conceptual design. Technical representative California Employment Development Department, Sacramento
Rey SJ, Janikas MV (2006) STARS: space–time analysis of regional systems. Geogr Anal 38(1):67–86
Robertson C, Nelson T, Boots B, Wulder M (2007) STAMP: spatial–temporal analysis of moving polygons. J Geogr Syst 9(3):207–227
Robinson AC (2011) Highlighting in geovisualization. Cartogr Geogr Inf Scis 38(4):373–383
Rundensteiner EA, Ward MO, Xie Z, Cui Q, Wad CV, Yang D, Huang S (2007) XmdvtoolQ: : quality-aware interactive data exploration. In: SIGMOD conference, pp 1109–1112
Sadahiro Y, Umemura M (2001) A computational approach for the analysis of changes in polygon distributions. J Geogr Syst 3(2):137–154
Sharpe WF (1970) Portfolio theory and capital markets. McGraw-Hill, New York
Siegel PB, Johnson TG, Alwang J (1993) Diversification of production agriculture across individual states: comment. J Prod Agric 6(3):445–446
Siegel PB, Alwang J, Johnson TG (1995a) A structural decomposition of regional economic instability: a conceptual framework*. J Reg Sci 35(3):457–470
Siegel PB, Johnson TG, Alwang J (1995b) Regional economic diversity and diversification. Growth Change 26(2):261–284
Swayne DF, Cook D, Buja A (1991) Xgobi: interactive dynamic graphics. In: The X window system with a link To S
Symanzik J, Majure J, Cook D (1996) Dynamic graphics in a GIS: a bidirectional link between ArcView 2.0 and XGobi. Comput Sci Stat 27:299–303
Symanzik J, Kötter T, Schmelzer S, Klinke S, Cook D, Swayne DF (1997) Spatial data analysis in the dynamically linked ArcView/XGobi/XploRe environment. Comput Sci Stat 29:561–569
Symanzik J, Cook D, Lewin-Koh N, Majure JJ, Megretskaia I (2000) Linking ArcViewTM and XGobi: insight behind the front end. J Comput Graph Stat 9(3):470–490
Takasuka M, Gahegan M (2001) Sharing exploratory geospatial analysis and decision making using GeoVISTA studio: from a desktop to the web. J Geogr Inf Decis Anal 5:129–139
Takatsuka M, Gahegan M (2002) GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization. Comput Geosci 28:1131–1144
Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley, Reading
Unwin A, Wills G, Haslett J (1990) REGARD—graphical analysis of regional data. In: Proceedings of the section on statistical graphics, American Statistical Association, Alexandria, pp 36–41
US Census Bureau (2012) ACS demographic and housing estimates 2007–2011. American Community Survey 5-year Estimates. http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_11_5YR_DP05&prodType=table
US Department of Commerce (2012) County Business Patterns (CBP). http://www.census.gov/econ/cbp/
Wagner J (2000) Regional economic diversity: action, concept, or state of confusion. J Reg Anal Policy 30:1–22
Wagner JE, Deller S (1998) Measuring the effects of economic diversity on growth and stability. Land Econ 74(4):541–556
Ward MO (1994) XmdvTool: integrating multiple methods for visualizing multivariate data. In: Proceedings of the conference on visualization ’94, IEEE Computer Society Press, Los Alamitos, pp 326–333
Weaver C (2004) Building highly-coordinated visualizations in improvise. In: Proceedings of the IEEE symposium on information visualization, IEEE Computer Society, Washington, pp 159–166
Weaver CE (2006) Improvise: a user interface for interactive construction of highly-coordinated visualizations. PhD thesis, University of Wisconsin at Madison, Madison
Wills G, Unwin AR, Haslett J (1991) Spatial interactive graphics applied to Irish socioeconomic data. In: Proceedings of the ASA statistical graphics section, American Statistical Association, Atlanta, pp 37–41
Wise S, Haining R, Ma J (1997) Regionalization tools for exploratory spatial analysis of health data. Recent developments in spatial analysis: spatial statistics, behavioural modelling, and computational intelligence pp 83–100
Wise S, Haining R, Ma J (2001) Providing spatial statistical data analysis functionality for the GIS user: the SAGE project. Int J Geogr Inf Sci 15(3):239–254
Wundt B, Martin L (1993) Minimizing employment instability: a model of industrial expansion with input-output considerations. Reg Sci Perspect 23(1):81–93
Ye X, Carroll MC (2011) Exploratory space-time analysis of local economic development. Appl Geogr 31(3):1049–1058
Ye X, Rey S (2011) A framework for exploratory space-time analysis of economic data. Ann Reg Sci pp 1–25
