Phân tích không-thời gian về thành phần công nghiệp với IVIID: một giao diện phân tích trực quan tương tác cho sự đa dạng công nghiệp

Journal of Geographical Systems - Tập 16 - Trang 183-209 - 2013
Elizabeth A. Mack1, Yifan Zhang1, Sergio Rey1, Ross Maciejewski1
1Tempe, USA

Tóm tắt

Cấu trúc công nghiệp của các địa phương đã thu hút được sự quan tâm đáng kể vì niềm tin rộng rãi rằng sự đa dạng công nghiệp giúp bảo vệ các nền kinh tế địa phương khỏi những cú sốc kinh tế. Kết quả là, một loạt các bộ công cụ và chỉ số đã được phát triển với mục tiêu cải thiện việc nắm bắt động lực cấu thành của các khu vực. Mặc dù hữu ích, một nhược điểm chính của những chỉ số này là tính tĩnh của chúng, điều này giới hạn tính khả dụng của những chỉ số này trong một bối cảnh không-thời gian. Bài báo này cung cấp tổng quan và ứng dụng của một giao diện được gọi là công cụ trực quan tương tác cho các chỉ số về sự đa dạng công nghiệp, đây là một công cụ phân tích trực quan được phát triển đặc biệt để phân tích và trực quan hóa các đo lường địa phương về thành phần công nghiệp cho dữ liệu khu vực. Tổng quan này sẽ bao gồm một cuộc thảo luận về các tính năng chính của nó, cũng như một minh chứng cho tính khả dụng của giao diện trong việc khám phá các câu hỏi xoay quanh sự đa dạng và tính chất động của cấu thành qua không gian và thời gian. Một trong những điểm tập trung của minh chứng này là nhấn mạnh cách mà tính tương tác và chức năng truy vấn của giao diện này vượt qua một số rào cản trong việc hiểu rõ cấu thành qua không gian và thời gian mà các bộ công cụ trước đây và các phương pháp tĩnh so sánh đã không thể giải quyết.

Từ khóa

#cấu trúc công nghiệp #đa dạng công nghiệp #phân tích không-thời gian #trực quan hóa #dữ liệu khu vực

Tài liệu tham khảo

Alwang J, Siegel PB (1994) Portfolio models and planning for export diversification: Malawi, Tanzania, and Zimbabwe. J Dev Stud 30(2):405–422 Anselin L (1995) Local indicators of spatial association–LISA. Geogr Anal 27(2):93–115 Anselin L (2003a) An introduction to spatial regression analysis in R. University of Illinois, Urbana-Champaign Anselin L (2003b) An introduction to EDA with GeoDa. Spatial Analysis Laboratory, Department of Agricultural and Consumer Economics, UIUC Anselin L (2012) Space-time mapping. Spatial Autocorrelation, Chicago Anselin L, Bao S (1997) Exploratory spatial data analysis linking SpaceStat and ArcView. Recent developments in spatial analysis—spatial statistics, behavioural modelling and computational intelligence pp 35–59 Anselin L, Dodson R, Hudak S (1993) Linking GIS and spatial data analysis in practice. Geogr Syst 1:3–23 Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38(1):5–22 Attaran M, Zwick M (1987) Entropy and other measures of industrial diversification. Q J Bus Econ 26(4):17–34 Bernat GA Jr, Repice ES (2000) Industrial composition of state earnings in 1958–1998. Surv Curr Bus 80(2):70 Bivand R (2002) Spatial econometrics functions in R: classes and methods. J Geogr Syst 4:405–421. doi:10.1007/s101090300096 Bivand R, Gebhardt A (2000) Implementing functions for spatial statistical analysis using the R language. J Geogr Syst 2:307–317 Block R, Block C (1995) Space, place and crime: hot spot areas and hot places of liquor-related crime. Crime Place 4(2):145–184 Bode E, Rey SJ (2006) The spatial dimension of economic growth and convergence. J Reg Sci 85(2):171–176 Brewer CA (2005) Designing better maps: a guide for GIS users. ESRI Press, California Conroy M (1975) The concept and measurement of regional industrial diversification. South Econ J pp 492–505 Dissart J (2003) Regional economic diversity and regional economic stability: research results and agenda. Int Reg Sci Rev 26:423–446 Drucker J (2011) Regional industrial structure concentration in the United States: trends and implications. Econ Geogr 87(4):421–452 Drucker J, Feser E (2012) Regional industrial structure and agglomeration economies: an analysis of productivity in three manufacturing industries. Reg Sci Urban Econ 42(1-2):1–14 Duque J, Dev B, Betancourt A, Franco J (2011) ClusterPy: library of spatially constrained clustering algorithms. Version 0.9.9. RiSE-group (Research in Spatial Economics). EAFIT University. Duranton G, Overman H (2008) Exploring the detailed location patterns of UK manufacturing industries using microgeographic data. J Reg Sci 48(1):213–243 Dykes J (1995) Pushing maps past their established limits: a unified approach to cartographic visualization. Innov GIS 3:177–87 Dykes J (1998) Cartographic visualization: exploratory spatial data analysis with local indicators of spatial association using TcI/Tk and cdv. J Roy Stat Soc Ser D (The Statistician) 47(3):485–497 Ellison G, Glaeser EL (1997) Geographic concentration in U.S. manufacturing industries: a Dartboard approach. J Polit Econ 105(5):889–927 Ellison G, Glaeser EL, Kerr W (2010) What causes industry agglomeration? Evidence from co-agglomeration patterns. Am Econ Rev 100:1195–1213 Everett B (1974) Cluster analysis. Heinemann Educational Books Ltd, London Gahegan M, Takatsuka M, Wheeler M, Hardisty F (2000) Abstract GeoVISTA Studio: a geocomputational workbench. In: The Proceedings of the 5th international conference on GeoComputation Geary R (1954) The contiguity ratio and statistical mapping. Inc Stat 5(3):115–146 Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206 Gomez-Rubio V, Ferrandiz J, Lopez A (2003) Detecting clusters of diseases with R. J Geogr Syst 7:189–206 Guo D, Chen J, MacEachren AM, Liao K (2006) A visualization system for space-time and multivariate patterns (VIS-STAMP). IEEE Trans Vis Comput Graph 12(6):1461–1474 Hägerstrand T (1970) What about people in regional science?. Papers Reg Sci 24(1):6–21 Haining R, Wise S, Ma J (2000) Designing and implementing software for spatial statistical analysis in a GIS environment. J Geogr Syst 2:257–286 Harvey J (1991) Modelling accessibility using space-time prism concepts within geographical information systems. Int J Geogr Inf Syst 5(3):287–301 Haslett J, Wills G, Unwin A (1990) SPIDER–interactive statistical tool for the analysis of spatially distributed data. Int J Geogr Inf Syst 4(3):285–296 Isard W, Azis IJ, Drennan MP, Miller RE, Saltzman S, Thorbecke E (1998) Methods of interregional and regional analysis. Ashgate, Aldershot Jackson RW (1984) An evaluation of alternative measures of regional industrial diversification. Reg Stud 18(2):103–112 Janikas MV, Rey SJ (2005) Spatial clustering, inequality and income convergence. Reg Dev 21:45–64 Knox E, Bartlett M (1964) The detection of space-time interactions. J Roy Stat Soc Ser C (Appl Stat) 13(1):25–30 Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26(6):1481–1496 Kulldorff M, Rand K, Gherman G, Williams G, DeFrancesco D (1998) SaTScan v 2.1: software for the spatial and space-time scan statistics. National Cancer Institute, Bethesda Kulldorff M, Heffernan R, Hartman J, Assunção R, Mostashari F (2005) A space–time permutation scan statistic for disease outbreak detection. PLoS Med 2(3):e59 Kwan M (1998) Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework. Geogr Anal 30(3):191–216 Kwan M (1999) Gender and individual access to urban opportunities: a study using space–time measures. Prof Geogr 51(2):211–227 LeSage J, Pace R (2004) Arc_mat, a toolbox for using arcview shape files for spatial econometrics and statistics. In: Egenhofer M, Freksa C, Miller H (eds) Geographic information science, lecture notes in computer science, vol 3234. Springer, Berlin pp 179–190. doi:10.1007/978-3-540-30231-5_12 Levine N (1999) CrimeStat: a spatial statistics program for the analysis of crime incident locations. In: The IV international conference on GeoComputation, Fredericksburg Levine N (2006) Crime mapping and the Crimestat program. Geogr Anal 38(1):41–56 Levine N (2010) CrimeStat: a spatial statistics program for the analysis of crime incident locations(V 3.3). National Institute of Justice, Washington Liu X, LeSage J (2010) Arc_mat: a matlab-based spatial data analysis toolbox. J Geogr Syst 12(1):69–87 López FA, Matilla-García M, Mur J, Marín MR (2011) Four tests of independence in spatiotemporal data. J Reg Sci 90(3):663–685 MacEachren A, Wachowicz M, Edsall R, Haug D, Masters R (1999) Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods. Int J Geogr Inf Sci 13(4):311–334 Maciejewski R, Pattah A, Ko S, Hafen R, Cleveland WS, Ebert DS (2013) Automated box-cox transformations for improved visual encoding. IEEE Trans Vis Comput Graph 19(1):130–140 Mack E, Grubesic TH, Kessler E (2007a) Indices of industrial diversity and regional economic composition. Growth Change 38(3):474–509 Mack E, Grubesic TH, Kessler E (2007b) Indices of industrial diversity and regional economic composition. Growth Change 38:474–509 Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220 Marcon E, Puech F (2010) Measures of the geographic concentration of industries: improving distance-based methods. J Econ Geogr 10(5):745–762 Markowitz H (1959) Portfolio selection: efficient diversification of investments. Wiley, New York McBratney A, Gruijter J (2006) A continuum approach to soil classification by modified fuzzy k-means with extragrades. J Soil Sci 43(1):159–175 McIntosh J, Yuan M (2005) A framework to enhance semantic flexibility for analysis of distributed phenomena. Int J Geogr Inf Sci 19(10):999–1018 Moran P (1948) The interpretation of statistical maps. J Roy Stat Soc Ser B (Methodol) 10(2):243–251 Openshaw S (1994) Two exploratory space-time-attribute pattern analysers relevant to GIS. Spatial Anal GIS pp 83–104 Peuquet D (1994) It’s about time: A conceptual framework for the representation of temporal dynamics in geographic information systems. Ann Assoc Am Geogr 84(3):441–461 Peuquet D (2001) Making space for time: issues in space-time data representation. GeoInformatica 5(1):11–32 Peuquet D, Duan N (1995) An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. Int J Geogr Inf Syst 9(1):7–24 Rey S (1998) Technician needs assessment survey. Technical representative, San Diego Regional Economic Development Corporation Rey S (2000) Identifying regional industrial clusters in the california economy: volume I conceptual design. Technical representative California Employment Development Department, Sacramento Rey SJ, Janikas MV (2006) STARS: space–time analysis of regional systems. Geogr Anal 38(1):67–86 Robertson C, Nelson T, Boots B, Wulder M (2007) STAMP: spatial–temporal analysis of moving polygons. J Geogr Syst 9(3):207–227 Robinson AC (2011) Highlighting in geovisualization. Cartogr Geogr Inf Scis 38(4):373–383 Rundensteiner EA, Ward MO, Xie Z, Cui Q, Wad CV, Yang D, Huang S (2007) XmdvtoolQ: : quality-aware interactive data exploration. In: SIGMOD conference, pp 1109–1112 Sadahiro Y, Umemura M (2001) A computational approach for the analysis of changes in polygon distributions. J Geogr Syst 3(2):137–154 Sharpe WF (1970) Portfolio theory and capital markets. McGraw-Hill, New York Siegel PB, Johnson TG, Alwang J (1993) Diversification of production agriculture across individual states: comment. J Prod Agric 6(3):445–446 Siegel PB, Alwang J, Johnson TG (1995a) A structural decomposition of regional economic instability: a conceptual framework*. J Reg Sci 35(3):457–470 Siegel PB, Johnson TG, Alwang J (1995b) Regional economic diversity and diversification. Growth Change 26(2):261–284 Swayne DF, Cook D, Buja A (1991) Xgobi: interactive dynamic graphics. In: The X window system with a link To S Symanzik J, Majure J, Cook D (1996) Dynamic graphics in a GIS: a bidirectional link between ArcView 2.0 and XGobi. Comput Sci Stat 27:299–303 Symanzik J, Kötter T, Schmelzer S, Klinke S, Cook D, Swayne DF (1997) Spatial data analysis in the dynamically linked ArcView/XGobi/XploRe environment. Comput Sci Stat 29:561–569 Symanzik J, Cook D, Lewin-Koh N, Majure JJ, Megretskaia I (2000) Linking ArcViewTM and XGobi: insight behind the front end. J Comput Graph Stat 9(3):470–490 Takasuka M, Gahegan M (2001) Sharing exploratory geospatial analysis and decision making using GeoVISTA studio: from a desktop to the web. J Geogr Inf Decis Anal 5:129–139 Takatsuka M, Gahegan M (2002) GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization. Comput Geosci 28:1131–1144 Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley, Reading Unwin A, Wills G, Haslett J (1990) REGARD—graphical analysis of regional data. In: Proceedings of the section on statistical graphics, American Statistical Association, Alexandria, pp 36–41 US Census Bureau (2012) ACS demographic and housing estimates 2007–2011. American Community Survey 5-year Estimates. http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_11_5YR_DP05&prodType=table US Department of Commerce (2012) County Business Patterns (CBP). http://www.census.gov/econ/cbp/ Wagner J (2000) Regional economic diversity: action, concept, or state of confusion. J Reg Anal Policy 30:1–22 Wagner JE, Deller S (1998) Measuring the effects of economic diversity on growth and stability. Land Econ 74(4):541–556 Ward MO (1994) XmdvTool: integrating multiple methods for visualizing multivariate data. In: Proceedings of the conference on visualization ’94, IEEE Computer Society Press, Los Alamitos, pp 326–333 Weaver C (2004) Building highly-coordinated visualizations in improvise. In: Proceedings of the IEEE symposium on information visualization, IEEE Computer Society, Washington, pp 159–166 Weaver CE (2006) Improvise: a user interface for interactive construction of highly-coordinated visualizations. PhD thesis, University of Wisconsin at Madison, Madison Wills G, Unwin AR, Haslett J (1991) Spatial interactive graphics applied to Irish socioeconomic data. In: Proceedings of the ASA statistical graphics section, American Statistical Association, Atlanta, pp 37–41 Wise S, Haining R, Ma J (1997) Regionalization tools for exploratory spatial analysis of health data. Recent developments in spatial analysis: spatial statistics, behavioural modelling, and computational intelligence pp 83–100 Wise S, Haining R, Ma J (2001) Providing spatial statistical data analysis functionality for the GIS user: the SAGE project. Int J Geogr Inf Sci 15(3):239–254 Wundt B, Martin L (1993) Minimizing employment instability: a model of industrial expansion with input-output considerations. Reg Sci Perspect 23(1):81–93 Ye X, Carroll MC (2011) Exploratory space-time analysis of local economic development. Appl Geogr 31(3):1049–1058 Ye X, Rey S (2011) A framework for exploratory space-time analysis of economic data. Ann Reg Sci pp 1–25