Spatio-Temporal Analysis of Road Accident Incidents and Delineation of Hotspots Using Geospatial Tools in Thrissur District, Kerala, India

A.L. Achu1, C. D. Aju2, Vipin Suresh1, Thushara P. Manoharan3, R. Rajesh3
1International and Inter University Centre for Natural Resources Management, University of Kerala, Thiruvananthapuram 695 581, Kerala, India
2Department of Geology, University of Kerala, Thiruvananthapuram 695 581, Kerala, India
3Inter University Centre for Geospatial Information Science and Technology, University of Kerala, Thiruvananthapuram, 695 581, Kerala, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Achu AL, Rose RS (2016) GIS Analysis of Crime Incidence and Spatial Variation in Thiruvananthapuram City. J Remot App 6:1–7

Aghajani MA, Dezfoulian RS, Arjroody AR, Rezaei M (2017) Applying GIS to identify the spatial and temporal patterns of road accidents using spatial statistics (case study: Ilam Province, Iran). Transp Res Procedia 25:2126–2138

Anderson TK (2009) Kernel density estimation and K-means clustering to profile road accident hotspots. Accid Anal Prev 41(3):359–364. https://doi.org/10.1016/j.aap.2008.12.014

Bailey TC, Gatrell AC (1995) Interactive spatial data analysis (413). Longman Sci Tech, Essex

Bíl M, Andrášik R, Sedoník J (2019) A detailed spatiotemporal analysis of traffic crash hotspots. Appl Geogr 107:82–90. https://doi.org/10.1016/j.apgeog.2019.04.008

Bornmann L, de Moya Angeon F (2019) Hot and cold spots in the US research: a spatial analysis of bibliometric data on the institutional level. J Inf Sci 45(1):84–91. https://doi.org/10.1177/0165551518782829

Census of India (2011) District census handbook Thrissur: village and town wise Primary Census abstract (PCA) Directorate of Census Operations Kerala, series-33 part XII-B

Chen CW, Lee CC, Tseng CP, Chen CH (2013) Application of GIS for the determination of hazard hotspots after direct transportation linkages between Taiwan and China. Nat Hazards 66(2):191–228. https://doi.org/10.1007/s11069-012-0402-3

Choudhary J, Ohri A, Kumar B (2015) Spatial and statistical analysis of road accidents hotspots using GIS. In: Third conference of transportation research group of India, pp 1−12

Dai D, Jaworski D (2016) Influence of built environment on pedestrian crashes: a network-based GIS analysis. Appl Geogr 73:53–61. https://doi.org/10.1016/j.apgeog.2016.06.005

De Silva V, Tharindra H, Vissoci JRN, Andrade L, Mallawaarachchi BC, Østbye T, Staton CA (2018) Road traffic crashes and built environment analysis of crash hotspots based on local police data in Galle, Sri Lanka. Int J Inj Control Saf Promot 25(3):311–318. https://doi.org/10.1080/17457300.2018.1431932

DeGroote JP, Sugumaran R, Brend SM, Tucker BJ, Bartholomay LC (2008) Landscape, demographic, entomological, and climatic associations with human disease incidence of West Nile virus in the state of Iowa, USA. Int J Health Geogr 7(1):19. https://doi.org/10.1186/1476-072X-7-19

Dominguez RL, Cherry CB, Estevez-Ordonez D, Mera R, Escamilla V, Pawlita M, Waterboer T, Wilson KT, Peek RM, Tavera G, Williams SM (2019) Geospatial analyses identify regional hotspots of diffuse gastric cancer in rural Central America. BMC Cancer 19(1):545. https://doi.org/10.1186/s12885-019-5726-x

Erdogan S, Yilmaz I, Baybura T, Gullu M (2008) Geographical information systems aided traffic accident analysis system case study: city of Afyonkarahisar. Accid Anal Prev 40(1):174–181. https://doi.org/10.1016/j.aap.2007.05.004

Fotheringham AS, Brunsdon C, Charlton M (2000) Quantitative geography: perspectives on spatial data analysis. Sage, California

Getis A, Aldstadt J (2004) Constructing the spatial weights matrix using a local statistic. Geogr Anal 36(2):90–104

Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24

GoI (2017) Report on road accidents in India, ministry of road transport and highways, government of India

Griffith DA (2013) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science & Business Media, Berlin

Gundogdu IB (2010) Applying linear analysis methods to GIS-supported procedures for preventing traffic accidents: case study of Konya. Saf Sci 48(6):763–769. https://doi.org/10.1016/j.ssci.2010.02.016

IRF International Road Federation (2018) World road statistics. International Road Federation, Washington

Jayan KD, Ganeshkumar B (2010) Identification of Accident Hotspots: AGIS Based Implementation for Kannur District, Kerala. Int J Geo Geosci 1(1):51–59

Kim K, Yamashita EY (2007) Using a k-means clustering algorithm to examine patterns of pedestrian involved crashes in Honolulu, Hawaii. J Adv Transp 41(1):69–89

Liang LY, Ma’soem DM, Hua LT (2005) Traffic accident application using geographic information system. J East Asia Soc Transp Stud 6:3574–3589

Maher MJ, Mountain LJ (1988) The identification of accident blackspots: a comparison of current methods. Accid Anal Prev 20(2):143–151. https://doi.org/10.1016/0001-4575(88)90031-0

Mitchell A (2005) The ESRI guide to GIS analysis: volume 2: spatial measurements & statistics, vol 2. ESRI press, Redlands

Mohaymany AS, Shahri M, Mirbagheri B (2013) GIS-based method for detecting high-crash-risk road segments using network kernel density estimation. Geo Spat Inf Sci 16(2):113–119. https://doi.org/10.1080/10095020.2013.766396

Moran PA (1948) The interpretation of statistical maps. J Royal Stat Soc Series B (Methodological) 10(2):243–251

Moran PA (1950) Notes on continuous stochastic phenomena. Biometrika 37(1/2):17–23

Okabe A, Okunuki KI, Shiode S (2006) SANET: a toolbox for spatial analysis on a network. Geogr Anal 38(1):57–66. https://doi.org/10.1111/j.0016-7363.2005.00674.x

Okabe A, Satoh T, Sugihara K (2009) A kernel density estimation method for networks, its computational method and a GIS-based tool. Int J Geogr Inf Sci 23(1):7–32. https://doi.org/10.1080/13658810802475491

Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(4):286–306

Ouni F, Belloumi M (2019) Pattern of road traffic crash hot zones versus probable hot zones in Tunisia: a geospatial analysis. Accid Anal Prev 128:185–196. https://doi.org/10.1016/j.aap.2019.04.008

Prasannakumar V, Vijith H, Charutha R, Geetha N (2011) Spatio-temporal clustering of road accidents: GIS based analysis and assessment. Procedia Soc Behav Sci 21:317–325

Rahman MK, Crawford T, Schmidlin TW (2018) Spatio-temporal analysis of road traffic accident fatality in Bangladesh integrating newspaper accounts and gridded population data. GeoJournal 83(4):645–661. https://doi.org/10.1007/s10708-017-9791-x

Randall TA, Churchill CJ, Baetz BW (2005) Geographic information system (GIS) based decision support for neighbourhood traffic calming. Can J Civ Eng 32(1):86–98. https://doi.org/10.1139/L04-085

Ruikar M (2013) National statistics of road traffic accidents in India. J Orthop Traumatol Rehabil 6(1):1. https://doi.org/10.4103/0975-7341.118718

Schuurman N, Cinnamon J, Crooks VA, Hameed SM (2009) Pedestrian injury and the built environment: an environmental scan of hotspots. BMC Public Health 9(1):233

Shafabakhsh GA, Famili A, Bahadori MS (2017) GIS-based spatial analysis of urban traffic accidents: case study in Mashhad. Iran J traffic trans engi (English edition) 4(3):290–299. https://doi.org/10.1016/j.jtte.2017.05.005

Thakali L, Kwon TJ, Fu L (2015) Identification of crash hotspots using kernel density estimation and kriging methods: a comparison. J Mod Transp 23(2):93–106. https://doi.org/10.1007/s40534-015-0068-0

WHO World Health Organization (2018) Global status report on road safety 2018 https://apps.who.int/iris/bitstream/handle/10665/276462/9789241565684-eng.pdf . Accessed 20 June 2019

Xie Z, Yan J (2008) Kernel density estimation of traffic accidents in a network space. Comput Environ Urban Syst 32(5):396–406. https://doi.org/10.1016/j.compenvurbsys.2008.05.001