Spatially and temporally variable sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece

Marine Chemistry - Tập 208 - Trang 83-94 - 2019
Jennifer L. Houghton1, William P. Gilhooly2, Fotios-Christos A. Kafantaris3, Gregory K. Druschel2, Guang-Sin Lu4, Jan P. Amend4,5, Athanasios Godelitsas6, David A. Fike1
1Dept. of Earth and Planetary Sciences, Washington University, St. Louis, MO, USA
2Dept. of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
3Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
4Dept. of Earth Sciences, University of Southern California, Los Angeles, CA, USA
5Dept. Biological Sciences, University of Southern California, Los Angeles, CA, USA
6Dept. of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece

Tài liệu tham khảo

Akerman, 2011, Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system, Geobiology, 9, 436, 10.1111/j.1472-4669.2011.00291.x Aller, 2010, Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: Implications for oceanic isotope cycles and the sedimentary record, Geochim. Cosmochim. Acta, 74, 4671, 10.1016/j.gca.2010.05.008 Antler, 2013, Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment, Geochim. Cosmochim. Acta, 118, 98, 10.1016/j.gca.2013.05.005 Balci, 2007, Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite, Geochim. Cosmochim. Acta, 71, 3796, 10.1016/j.gca.2007.04.017 Bottcher, M.E., Brumsack, H-J., de Lange, G.J., 1998. Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the eastern Mediterranean, in: Robertson, A.H.F., Richter, K.-C., Camerlenghi, A.(Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. vol. 160, 365–373. Bradley, 2011, Revisiting the dissimilatory sulfate reduction pathway, Geobiology, 9, 446, 10.1111/j.1472-4669.2011.00292.x Brendel, 1995, Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S (-II) in porewaters of marine and freshwater sediments, Environ. Sci. Technol., 29, 751, 10.1021/es00003a024 Brunner, 2005, A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria, Geochim. Cosmochim. Acta, 69, 4759, 10.1016/j.gca.2005.04.015 Brunner, 2005, A model for oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction processes, Geochim. Cosmochim. Acta, 69, 4773, 10.1016/j.gca.2005.04.017 Brunner, 2012, The reversibility of dissimilatory sulphate reduction and the cell-internal multi-step reduction of sulphite to sulphide: insights from the oxygen isotope composition of sulphate, Isot. Environ. Health Stud., 48, 33, 10.1080/10256016.2011.608128 Canfield, 2001, Isotope fractionation by natural populations of sulfate-reducing bacteria, Geochim. Cosmochim. Acta, 65, 1117, 10.1016/S0016-7037(00)00584-6 Canfield, 2004, The evolution of the Earth surface sulfur reservoir, Am. J. Sci., 304, 839, 10.2475/ajs.304.10.839 Canfield, 1986, The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales, Chem. Geol., 54, 149, 10.1016/0009-2541(86)90078-1 Caporaso, 2010, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7, 335, 10.1038/nmeth.f.303 Caporaso, 2011, Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample, Proc. Natl. Acad. Sci., 108, 4516, 10.1073/pnas.1000080107 Chiba, 1985, Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures, Geochim. Cosmochim. Acta, 49, 993, 10.1016/0016-7037(85)90314-X Cline, 1969, Spectrophotometric determination of hydrogen sulfide in natural waters, Limnol. Oceanogr., 14, 454, 10.4319/lo.1969.14.3.0454 Dando, 1995, Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc, Cont. Shelf Res., 15, 913, 10.1016/0278-4343(95)80002-U Dando, 1998, Microbiology of shallow hydrothermal sites off Palaeochori Bay, Milos (Hellenic Volcanic Arc), Cah. Biol. Mar., 39, 369 Dando, 1999, Hydrothermalism in the Mediterranean Sea, Prog. Oceanogr., 44, 333, 10.1016/S0079-6611(99)00032-4 Dick, 2015, Omic approaches to microbial geochemistry, Elements, 11, 403, 10.2113/gselements.11.6.403 Druschel, 2004, Acid mine drainage biogeochemistry at Iron Mountain, California, Geochem. Trans., 5, 13, 10.1186/1467-4866-5-13 Falter, 2000, Hydraulic control of pore water geochemistry within the oxic‐suboxic zone of a permeable sediment, Limnol. Oceanogr., 45, 550, 10.4319/lo.2000.45.3.0550 Fike, 2008, A paired sulfate-pyrite δ34S approach to understanding the evolution of the Ediacaran-Cambrian sulfur cycle, Geochim. Cosmochim. Acta, 72, 2636, 10.1016/j.gca.2008.03.021 Fike, 2010, Reconstructing biogenic pyrite burial in evaporite basins: an example from the Ara Group, Sultanate of Oman, Geology, 38, 371, 10.1130/G30230.1 Fike, 2006, Oxidation of the Ediacaran Ocean, Nature, 444, 744, 10.1038/nature05345 Fike, 2015, Rethinking the Ancient Sulfur Cycle, Ann. Rev. Earth Planet. Sci., 43, 20.1, 10.1146/annurev-earth-060313-054802 Fike, 2017, Spatially resolved capture of hydrogen sulfide from the water column and sedimentary pore waters for abundance and stable isotopic analysis, Mar. Chem., 197, 26, 10.1016/j.marchem.2017.10.004 Fischer, 2014, SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle, Proc. Natl. Acad. Sci., 111, 5468, 10.1073/pnas.1322577111 Fram, 2014, Miniature thermistor chain for determining surficial sediment porewater advection, Limnol. Oceanogr. Methods, 12, 155, 10.4319/lom.2014.12.155 Fry, 1988, Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution, Chem. Geol., 73, 205 Fytikas, 1986, Volcanology and petrology of volcanic products from the island of Milos and neighboring islets, J. Volcanol. Geotherm. Res., 28, 297, 10.1016/0377-0273(86)90028-4 Gilhooly, 2014, Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Geochem. Trans., 15, 12, 10.1186/s12932-014-0012-y Gilhooly, W.P., III, Reinhard, C.T., Lyons, T.W., 2016. A comprehensive sulfur and oxygen isotope study of sulfur cycling in a shallow, hyper-euxinic meromictic lake. Geochim. Cosmochim. Acta 189, 1–23. Gill, 2011, Geochemical evidence for widespread euxinia in the Later Cambrian ocean, Nature, 469, 80, 10.1038/nature09700 Glud, 2008, Oxygen dynamics of marine sediments, Mar. Biol. Res., 4, 243, 10.1080/17451000801888726 Godelitsas, 2015, Amorphous As-sulfide precipitates from the shallow water hydrothermal vents off Milos Island (Greece), Mar. Chem., 177, 687, 10.1016/j.marchem.2015.09.004 Gomes, 2017, Environmental insights from high-resolution (SIMS) sulfur isotope data in multiple generations of sulfides in Proterozoic microbialites with diverse mat textures, Geobiology, 16, 17, 10.1111/gbi.12265 Hurtgen, 2005, Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite, Geology, 33, 41, 10.1130/G20923.1 Jensen, 2005, Oxic microzones and radial oxygen loss from roots of Zostera marina, Mar. Ecol. Prog. Ser., 293, 49, 10.3354/meps293049 Johnston, 2007, Sulfur isotope insights into microbial sulfate reduction: when microbes meet models, Geochim. Cosmochim. Acta, 71, 3929, 10.1016/j.gca.2007.05.008 Jones, 2013, Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ34S, Earth Planet. Sci. Lett., 363, 144, 10.1016/j.epsl.2012.12.015 Kafantaris, 2017 Kaplan, 1964, Microbiological fractionation of sulphur isotopes, Microbiology, 34, 195 Leavitt, 2013, Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record, PNAS, 110, 11244, 10.1073/pnas.1218874110 Lloyd, 1968, Oxygen Isotope Behavior in the Sulfate-Water System, J. Geophys. Res., 73, 6099, 10.1029/JB073i018p06099 Luther, 2008, Use of voltammetric solid-state (micro) electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA), Mar. Chem., 108, 221, 10.1016/j.marchem.2007.03.002 Meyer-Dombard, 2013, Microbial diversity and potential for arsenic and iron biogeochemical cycling at an arsenic rich, shallow-sea hydrothermal vent (Tutum Bay, Papua New Guinea), Chem. Geol., 348, 37, 10.1016/j.chemgeo.2012.02.024 Mills, 2012, Characterization of metabolically active bacterial populations in subseafloor Nankai Trough sediments above, within, and below the sulfate–methane transition zone, Front. Microbiol., 3, 113, 10.3389/fmicb.2012.00113 Mizutani, 1969, Oxygen isotopic composition of sulphates – part 4, NZ J. Sci., 12, 60 Nomikou, 2013, Submarine volcanoes along the Aegean volcanic arc, Tectonophysics, 597–598, 123, 10.1016/j.tecto.2012.10.001 Pichler, 1999, Fe sulfide formation due to seawater-gas-sediment interaction in a shallow-water hydrothermal system at Lihir Island, Papua New Guinea, Econ. Geol., 94, 281, 10.2113/gsecongeo.94.2.281 Price, 2017 Price, 2013, Processes influencing extreme as enrichment in shallow-sea hydrothermal fluids of Milos Island, Greece, Chem. Geol., 348, 15, 10.1016/j.chemgeo.2012.06.007 Rickard, 2007, Chemistry of iron sulfides, Chem. Rev., 107, 514, 10.1021/cr0503658 Rickard, 2005, vol. 97, 141 Rozan, 2000, Quantifying elemental sulfur (S0), bisulfide (HS−) and polysulfides (Sx2−) using a voltammetric method, Anal. Chim. Acta, 415, 175, 10.1016/S0003-2670(00)00844-8 Rusch, 2008, Functional characterization of the microbial community in geothermally heated marine sediments, Microb. Ecol., 55, 723, 10.1007/s00248-007-9315-1 Schloss, 2009, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537, 10.1128/AEM.01541-09 Sievert, 1999, Spatial Heterogeneity of Bacterial Populations along an Environmental Gradient at a Shallow Submarine Hydrothermal Vent near Milos Island (Greece), Appl. Environ. Microbiol., 65, 3834, 10.1128/AEM.65.9.3834-3842.1999 Sim, 2011, Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp, Goechimica et Cosmochimica Acta., 75, 4244, 10.1016/j.gca.2011.05.021 Slowey, 2012, How to overcome inter-electrode variability and instability to quantify dissolved oxygen, Fe (II), Mn (II), and S (− II) in undisturbed soils and sediments using voltammetry, Geochem. Trans., 13, 6, 10.1186/1467-4866-13-6 Strauss, 1999, Geological evolution from isotope proxy signals - sulfur, Chem. Geol., 161, 89, 10.1016/S0009-2541(99)00082-0 Turchyn, 2010, Kinetic oxygen isotope effects during dissimilatory sulfate reduction: a combined theoretical and experimental approach, Geochim. Cosmochim. Acta, 74, 2011, 10.1016/j.gca.2010.01.004 Valsami-Jones, 2005, The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos Island, Hellenic Volcanic Arc, J. Volcanol. Geoth. Res., 148, 130, 10.1016/j.jvolgeores.2005.03.018 Varnavas, 2005, Submarine hydrothermal activity off Santorini and Milos in the Central Hellenic Volcanic Arc: a synthesis, Chem. Geol., 224, 40, 10.1016/j.chemgeo.2005.07.013 Wenzhöfer, 2000, In situ microsensor studies of a shallow water hydrothermal vent at Milos, Greece, Mar. Chem., 69, 43, 10.1016/S0304-4203(99)00091-2 Wilson, 2011, Analysis of inorganic nitrogen and related anions in high salinity water using ion chromatography with tandem UV and conductivity detectors, J. Chromatogr. Sci., 49, 596, 10.1093/chrsci/49.8.596 Wing, 2014, Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration, Proc. Natl. Acad. Sci., 111, 18116, 10.1073/pnas.1407502111 Yücel, 2013, Eco-geochemical dynamics of a shallow-water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean), Chem. Geol., 356, 11, 10.1016/j.chemgeo.2013.07.020