Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands

Journal of Ecology - Tập 105 Số 1 - Trang 277-287 - 2017
Loïc Chalmandrier1,2, Tamara Münkemüller1,2, Marie‐Pascale Colace1,2, Julien Renaud1,2, S. Aubert3, Bradley Z. Carlson1,2, J. Clément4,1,2, Nicolas Legay1,2, Gilles Pellet3, Amélie Saillard1,2, Sébastien Lavergne1,2, Wilfried Thuiller1,2
1LECA - Laboratoire d'Ecologie Alpine (bat. D - Biologie 2233 Rue de la piscine - BP 53 38041 GRENOBLE CEDEX 9 - France)
2Laboratoire d’Écologie Alpine (LECA) CNRS F‐38000 Grenoble France
3Station Alpine Joseph Fourier UMS CNRS 3370 Université Joseph Fourier Grenoble 1 BP 53, 38041 Grenoble cedex 9 France
4CARRTEL Université Savoie Mont Blanc ‐ INRA 73376 Chambéry France

Tóm tắt

Summary Assembly of grassland communities has long been scrutinized through the lens of functional diversity. Studies generally point to an overwhelming influence of climate on observed patterns of functional diversity, despite experimental evidence demonstrating the importance of biotic interactions. We postulate that this is because most observational studies neglect both scale dependencies of assembly processes and phenotypic variation between individuals. Here, we test for changes in the importance of abiotic filtering and biotic interactions along a stress gradient by explicitly accounting for different scales. In addition to quantifying intraspecific trait variability (ITV), we also vary the two components of spatial scale, including grain (i.e. community size) and extent (i.e. the geographical area that defines the species pool). We sampled 20 grassland communities in ten sites distributed along a 975‐m elevation gradient. At each site, we measured seven functional traits for a total of 2020 individuals at different spatial grains. We related community functional diversity metrics to the main environmental gradient of our study area, growing season length (GSL), and assessed the dependence of these relationships on spatial grain, spatial extent and ITV. At large spatial grain and extent, the imprint of environmental filtering on functional diversity became more important with increasing stress (i.e. functional diversity decreased with shorter GSL). At small spatial grain and extent, we found a convex relationship between functional diversity and GSL congruent with the hypothesis that competition is dominant at low‐stress levels while facilitative interactions are dominant at high‐stress levels (i.e. high functional diversity at both extremes of the stress gradient). Importantly, the effect of intraspecific variability on assembly rules was noticeable only at small spatial grain and extent. Synthesis. Our study reveals how the combination of abiotic stress and biotic interactions shapes the functional diversity of alpine grasslands at different spatial scales, and highlights the importance of phenotype variation between individuals for community assembly processes at fine spatial scale. Our results suggest that studies analysing trait‐based assembly rules but ignoring ITV and focusing on a single spatial scale are likely to miss essential features of community diversity patterns.

Từ khóa


Tài liệu tham khảo

10.1111/j.1461-0248.2010.01496.x

10.1111/j.1365-2435.2010.01727.x

10.1016/j.ppees.2011.04.003

10.1111/j.1600-0706.2011.19672.x

10.1890/09-1849.1

Bartoń K.(2012)MuMIn: multi‐model inference. R package version 1.9.13.

10.1890/11-1394.1

10.1111/j.1600-0587.2012.07438.x

Burnham K.P., 2002, Model Selection and Multi‐Model Inference: A Practical Information‐Theoretic Approach

10.1111/j.1469-8137.1976.tb01532.x

10.1093/aob/mcv041

10.1111/jvs.12031

10.1890/13-2153.1

Chalmandrier L., 2016, Data from: Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands, Dryad Digital Repository

10.1111/ele.12048

10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2

10.1890/0012-9658(2001)082[3295:FACOGI]2.0.CO;2

10.1016/j.ppees.2011.11.004

Cody M.L., 1975, Ecology and Evolution of Communities

10.1071/BT02124

10.1146/annurev-ecolsys-120213-091759

10.1111/j.1461-0248.2004.00671.x

10.1007/s10021-011-9450-x

10.1146/annurev.ecolsys.33.020602.095451

10.1111/1365-2435.12362

Descombes P. Marchon J. Praverdand J.‐N. Bilat J. Guisan A. Rasmann S.&Pellissier L.(2016)Community‐level plant palatability increases with elevation as insect herbivore abundance declines. Journal of Ecology doi:10.1111/1365‐2745.12664.

10.1038/nature16489

10.1175/2008JAMC1808.1

10.1111/j.1600-0587.1989.tb00846.x

10.1071/PP9820121

10.1007/s00442-015-3312-8

10.1111/j.1365-2435.2009.01591.x

10.1111/1365-2745.12063

10.1093/aob/mcq220

10.1111/j.1365-2745.2008.01421.x

10.1146/annurev-ecolsys-110411-160411

10.1111/j.1469-8137.2012.04300.x

10.1111/jvs.12041

10.1046/j.1469-8137.1997.00671.x

10.1007/s00442-016-3552-2

10.1016/j.tree.2003.10.013

10.1111/j.1365-2745.2010.01687.x

10.1111/jvs.12066

10.1111/1365-2435.12116

10.1007/978-3-642-18970-8

10.1890/09-1672.1

10.1073/pnas.1413650112

10.1086/519400

10.1111/oik.01311

10.1890/15-0156.1

10.2307/1941447

10.1111/j.1461-0248.2010.01509.x

10.1016/j.tree.2006.02.002

10.1111/nph.12478

10.1111/j.1461-0248.2006.00935.x

10.1111/geb.12137

10.1111/1365-2745.12000

Pinheiro J. Bates D. DebRoy S.&Sarkar D.(2007)Linear and nonlinear mixed effects models. R package version 3 57.

10.1111/j.1365-3040.1992.tb01476.x

R Core Development Team, 2012, R: A Language and Environment for Statistical Computing

Rao C.R., 1986, Rao's axiomatization of diversity measures, Encyclopedia of Statistical Sciences, 7, 614

10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2

10.1046/j.1461-0248.2003.00554.x

10.1007/s00442-012-2351-7

10.1371/journal.pone.0111189

10.1111/ele.12508

10.1111/ecog.00711

10.1111/j.1365-2745.2011.01945.x

10.1890/03-0148

10.1111/ecog.00836

10.1111/ele.12526

10.1093/aob/mcm022

10.1111/j.1365-294X.2008.04001.x

10.1111/j.0030-1299.2007.15559.x

10.1007/s00442-009-1333-x

10.1016/j.scitotenv.2015.03.141

10.1098/rstb.2011.0056

10.2307/2389612

10.1111/1365-2435.12176