Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ước lượng dòng chảy bề mặt theo các loại hình sử dụng đất và tần suất mưa: trường hợp lưu vực sông Dechatu dễ bị lũ lụt, Dire Dawa, Ethiopia
Tóm tắt
Việc hiểu rõ các điều kiện dòng chảy không gian trong những lưu vực không có trạm đo mưa và có nguy cơ lũ lụt là rất quan trọng cho quản lý lưu vực hiệu quả nhằm giảm thiểu rủi ro lũ lụt ở lưu vực hạ lưu. Nghiên cứu của chúng tôi nhằm ước lượng dòng chảy bề mặt không gian dưới các hình thức sử dụng đất và tần suất mưa khác nhau trong lưu vực sông Dechatu (DRC) dễ bị lũ lụt, Dire Dawa, Ethiopia. Trước khi tiến hành phân tích tần suất mưa, chúng tôi đã thực hiện một bài kiểm tra độ phù hợp - Giá trị cực tiểu tổng quát, Log Pearson loại 3, và Gumbel max - thông qua bài kiểm tra Kolmogorov Smirnov và Anderson Darling. Sau đó, các giá trị mưa cực đoan cho các thời gian quay vòng khác nhau (RPs) được tích hợp với mô hình Số lượng Đường cong Bảo tồn Đất nhằm ước lượng dòng chảy bề mặt không gian. Mưa lớn nhất hàng năm được ước lượng là 53–79 mm và 83–89 mm cho các RPs từ 2 đến 25 năm và 50 đến 200 năm, tương ứng. Phần tây bắc của DRC ghi nhận tác động dòng chảy bề mặt cao nhất so với lưu vực phía đông. Thể tích dòng chảy cao nhất chủ yếu đến từ đất trống, cây bụi mở và đất canh tác theo thứ tự giảm dần, dao động từ 1,45 triệu m3 (trong RPs 2 năm) đến 2,5 triệu m3 (trong RPs 200 năm); tuy nhiên, một dòng chảy tương đối thấp dưới 0,75 triệu m3 được ghi nhận ở lưu vực thượng nguồn. Các ước lượng dòng chảy bề mặt không gian cho các RPs ngắn (2 đến 10 năm) và dài (25 đến 200 năm) có thể được sử dụng để thực hiện các biện pháp bảo tồn độ ẩm và xây dựng các công trình lưu trữ nước nhằm giảm thiểu tác động của lũ quét ở thành phố Dire Dawa, nơi mà con người và tài sản thường bị thiệt hại khi có mưa lớn xuất phát từ các ngọn núi cao ở phía đông Ethiopia.
Từ khóa
Tài liệu tham khảo
Dawei Han (2011) Flood frequency analysis. In: Flood risk assessment and management. CRC press, pp 23–33
Haan CT (1977) Statistical methods in hydrology. Stat methods Hydrol. https://doi.org/10.1201/9780429423116-36
Haokip P, Khan MA, Choudhari P et al (2022) Identification of erosion-prone areas using morphometric parameters, land use land cover and multi-criteria decision-making method: geo-informatics approach. Environ Dev Sustain 24:527–557. https://doi.org/10.1007/s10668-021-01452-7
Hernández-Guzmán R, Ruiz-Luna A (2013) SARA—an enhanced curve number-based tool for estimating direct runoff. J Hydroinformatics 15:881–887. https://doi.org/10.2166/hydro.2013.145
Krajewski A, Sikorska-Senoner AE, Hejduk A, Hejduk L (2020) Variability of the initial abstraction ratio in an urban and an agroforested catchment. Water (Switzerland) 12:415. https://doi.org/10.3390/w12020415
Kulimushi LC, Choudhari P, Maniragaba A et al (2021a) Erosion risk assessment through prioritization of sub-watersheds in Nyabarongo River catchment. Rwanda. Environ Challenges 5:100260
Kulimushi LC, Maniragaba A, Choudhari P et al (2021b) Evaluation of soil erosion and sediment yield spatio-temporal pattern during 1990–2019. Geomatics, Nat Hazards Risk 12:2676–2707. https://doi.org/10.1080/19475705.2021.1973118
Li Q, Li Z, Chen L, Yao C (2015) Regionalization of coaxial correlation diagrams for the semi-humid and semi-arid catchments in Northern China. Proc Int Assoc Hydrol Sci 368:317–322
Main WM, Levy B, McCuen R (2001) Assessment of storm duration for hydrologic design. J Hydrol Eng 6:536–536. https://doi.org/10.1061/(asce)1084-0699(2001)6:6(536)
Malamud BD, Turcotte DL (2006) The applicability of power-law frequency statistics to floods. J Hydrol 322:168–180. https://doi.org/10.1016/j.jhydrol.2005.02.032
Mihalik EN, Levine NS, Amatya DM (2008) Rainfall-runoff modeling of the chapel branch creek watershed using GIS-based rational and SCS-CN methods. American Society of Agricultural and Biological Engineers
Mishra & Singh, V. P. SK (2013) Soil Conservation Service Curve Number (SCS-CN) Methodology. Springer Science & Business Media
Myronidis D, Stathis D, Sapountzis M (2016) Post-evaluation of flood hazards induced by former artificial interventions along a coastal Mediterranean settlement. J Hydrol Eng 21:05016022. https://doi.org/10.1061/(asce)he.1943-5584.0001413
Navas A (1993) Soil losses under simulated rainfall in semi-arid shrublands of the Ebro Valley, Spain. Soil Use Manag 9:152–157. https://doi.org/10.1111/j.1475-2743.1993.tb00946.x
Robson AJ, Reed DW (1999) Statistical procedures for flood frequency estimation. Institute of Hydrology Wallingford
Roy S, Mistri B (2013) Estimation of peak flood discharge for an ungauged river: a case study of the Kunur River, West Bengal. Geogr J 2013:1–11. https://doi.org/10.1155/2013/214140
Saf B, Dikbas F, Yasar M (2007) Determination of regional frequency distributions of floods in West Mediterranean River Basins in Turkey. Fresenius Environ Bull 16:1300
Senti ET, Tufa BW, Gebrehiwot KA (2014) Soil erosion , sediment yield and conservation practices assessment on Lake Haramaya Catchment. World J Agric Sci 2:186–193
Shi W, Wang N (2020) An improved SCS-CN method incorporating slope, soil moisture, and storm duration factors for runoff prediction. Water (Switzerland) 12:1335. https://doi.org/10.3390/W12051335
Soil Conservation Service (1972) National engineering handbook, section 4, hydrology. USDA Soil Conservation Service Washington, DC
Swingland IR (2013) Capturing carbon and conserving biodiversity: the market approach. Capturing Carbon Conserv Biodivers Mark Approach 360:1–368. https://doi.org/10.4324/9781849770682
US Water Resources Council (1982) Guidelines for determining flood flow frequency (revised). Hydrol. Subcom., Office of Water Data Coordination, US Geological Survey, Reston, VA
Vanmaercke M, Zenebe A, Poesen J et al (2010) Sediment dynamics and the role of flash floods in sediment export from medium-sized catchments: a case study from the semi-arid tropical highlands in northern Ethiopia. J Soils Sediments 10:611–627. https://doi.org/10.1007/s11368-010-0203-9
WWDSE (Water works design and supervision enterprise) (2005) Dire Dawa integrated natural resource master plan study. Dire Dawa
Yang L, Smith J, Baeck ML et al (2017) Flash flooding in arid/semiarid regions: dissecting the hydrometeorology and hydrology of the 19 August 2014 storm and flood hydroclimatology in Arizona. J Hydrometeorol 18:3103–3123. https://doi.org/10.1175/JHM-D-17-0089.1
Yohannes AW, Cotter M, Kelboro G, Dessalegn W (2018) Land use and land cover changes and their effects on the landscape of Abaya-Chamo basin, Southern Ethiopia. Land 7. https://doi.org/10.3390/land7010002
Yong STY, Chen W (2002) Modeling the relationship between land use and surface water quality. J Environ Manage 66:377–393. https://doi.org/10.1006/jema.2002.0593
Yu SL, Kaighn RJ (1992) VDOT manual of practice for planning stormwater management. Virginia Transportation Research Council
Zhang J, Yu Z, Yu T et al (2018) Transforming flash floods into resources in arid China. Land use policy 76:746–753. https://doi.org/10.1016/j.landusepol.2018.03.002
Zhou C, Zhang G, Yang Z et al (2020) An Adaptive terrain-dependent method for SRTM DEM correction over mountainous areas. IEEE Access 8:130878–130887. https://doi.org/10.1109/ACCESS.2020.3009851
Abate EY (2010) Anthropogenic impacts on groundwater resources in the urban environment of Dire Dawa, Ethiopia. Msc Thesis Geosci. University Oslo
Abtew W, Melesse AM (2016) Landscape changes impact on regional hydrology and climate. In: Springer Geography. Springer, pp 31–50
Adane GB, Hirpa BA, Gebru BM et al (2021a) Integrating satellite rainfall estimates with hydrological water balance model: rainfall-runoff modeling in awash river basin, Ethiopia. Water (Switzerland) 13:800. https://doi.org/10.3390/w13060800
Adane GB, Hirpa BA, Lim CH, Lee WK (2021b) Evaluation and comparison of satellite-derived estimates of rainfall in the diverse climate and terrain of central and northeastern Ethiopia. Remote Sens 13:1275. https://doi.org/10.3390/rs13071275
Adane Z, Yohannes T, Swedenborg E (2021c) Balancing water demands and increasing climate resilience: establishing a baseline water risk assessment model in Ethiopia. World Resour Inst. 10.46830/writn.19.00123
Ajmal M, Waseem M, Kim D, Kim TW (2020) A pragmatic slope-adjusted curve number model to reduce uncertainty in predicting flood runoff from steep watersheds. Water (Switzerland) 12:1469. https://doi.org/10.3390/w12051469
Alemu YT (2015) Flash flood hazard in Dire Dawa, Ethiopia. J Soc Sci Humanit 1:400–414
Bangira T, Maathuis BHP, Dube T, Gara TW (2015) Investigating flash floods potential areas using ASCAT and TRMM satellites in the Western Cape Province, South Africa. Geocarto Int 30:737–754. https://doi.org/10.1080/10106049.2014.997302
Billi P, Alemu YT, Ciampalini R (2015) Increased frequency of flash floods in Dire Dawa, Ethiopia: change in rainfall intensity or human impact? Nat Hazards 76:1373–1394. https://doi.org/10.1007/s11069-014-1554-0
Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. https://doi.org/10.1016/0034-4257(91)90048-B
Cronshey RG, Roberts RT, Miller N (1985) Urban hydrology for small watersheds (Tr-55 Rev. ). US Dept. of Agriculture, Soil Conservation Service, Engineering Division
Deshmukh DS, Chaube UC, Ekube Hailu A et al (2013) Estimation and comparison of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope. J Hydrol 492:89–101. https://doi.org/10.1016/j.jhydrol.2013.04.001
Dire Dawa Administration Agriculture Water Mines and Energy Bureau (DDAWME) (2016) Assessment of land resources and socioeconomic situations for designing appropriate land use planning in rural kebeles of Dire Dawa Administration. Dire Dawa
Elfeki A, Masoud M, Niyazi B (2017) Integrated rainfall–runoff and flood inundation modeling for flash flood risk assessment under data scarcity in arid regions: Wadi Fatimah basin case study, Saudi Arabia. Nat Hazards 85:87–109. https://doi.org/10.1007/s11069-016-2559-7
Erena SH, Worku H (2018) Flood risk analysis: causes and landscape based mitigation strategies in Dire Dawa city, Ethiopia. Geoenviron Disas 5:16. https://doi.org/10.1186/s40677-018-0110-8
Erena SH, Worku H (2019) Dynamics of land use land cover and resulting surface runoff management for environmental flood hazard mitigation: the case of Dire Daw city, Ethiopia. J Hydrol Reg Stud 22:100598. https://doi.org/10.1016/j.ejrh.2019.100598
Erena SH, Worku H, De Paola F (2018) Flood hazard mapping using FLO-2D and local management strategies of Dire Dawa city, Ethiopia. J Hydrol Reg Stud 19:224–239. https://doi.org/10.1016/j.ejrh.2018.09.005
Ethiopian Ministry of Water Resources (2008) Dire Dawa flood mitigation project feasibility report Supplementary Report 05 Hydrology, Reservoir Assessment and Early Warning: Awash River Basin Flood Control and Watershed Management Study Project. Addis Ababa, Ethiopia
FAO I, ISRIC I (2013) JRC (2012) Harmonized world soil database v 1.2
Gebru BM, Lee WK, Khamzina A et al (2019) Hydrological response of dry afromontane forest to changes in land use and land cover in northern Ethiopia. Remote Sens 11:1905. https://doi.org/10.3390/rs11161905
Gebru BM, Adane GB, Park E, et al (2022) Landscape pattern and climate dynamics effects on ecohydrology and implications for runoff management: Case of a dry Afromontane Forest in northern Ethiopia. Geocarto Int 1–23. https://doi.org/10.1080/10106049.2022.2068673
Farooq M, Shafique M, Khattak MS (2018) Flood frequency analysis of river swat using Log Pearson type 3, Generalized Extreme Value, Normal, and Gumbel Max distribution methods. Arab J Geosci 11:1–10. https://doi.org/10.1007/s12517-018-3553-z
Foody GM, Ghoneim EM, Arnell NW (2004) Predicting locations sensitive to flash flooding in an arid environment. J Hydrol 292:48–58. https://doi.org/10.1016/j.jhydrol.2003.12.045