Spatial reticulate polytriphenylamine cathode material with enhanced capacity for rechargeable aluminum ion batteries

Ionics - Tập 29 Số 9 - Trang 3619-3627 - 2023
Fei Tao1, Guokang Wei2,1,3, Xiangdong Xu1, Wei Xu1, Wei Xie4, Jianhong Yang1, Zhenhua Luo3, X. Li1, Jia Qiao1
1School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
2Cranfield Tech Futures Graduate Institute, Jiangsu University, Zhenjiang, China
3School of Water, Energy and Environment, Cranfield University, Cranfield, UK
4School of Food and Biological Engineering, Hezhou University, Hezhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yang H, Li H, Li J, Sun Z, He K, Cheng HM et al (2019) The rechargeable aluminum battery: opportunities and challenges. Angew Chem Int Ed Engl 58(35):11978–11996

Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

Chu S, Cui Y, Liu N (2016) The path towards sustainable energy. Nat Mater 16(1):16

Hu Y, Sun D, Luo B, Wang L (2019) Recent progress and future trends of aluminum batteries. Energy Technol 7(1):86–106

Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E et al (2016) An overview and future perspectives of aluminum batteries. Adv Mater 28(35):7564–7579

Lin M-C, Gong M, Lu B, Wu Y, Wang D-Y, Guan M et al (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):324–328

Zhou Q, Zheng Y, Wang D, Lian Y, Ban C, Zhao J et al (2020) Cathode materials in non-aqueous aluminum-ion batteries: progress and challenges. Ceram Int 46(17):26454–26465

Zhang K, Kirlikovali KO, Suh JM, Choi J-W, Jang HW, Varma RS et al (2020) Recent advances in rechargeable aluminum-ion batteries and considerations for their future progress. ACS Appl Energy Mater 3(7):6019–6035

Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F et al (2015) Binder-Free V2O5 Cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces 7(1):80–84

Wang S, Jiao S, Wang J, Chen HS, Tian D, Lei H et al (2016) High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 11(1):469–477

Nacimiento F, Cabello M, Alcántara R, Pérez-Vicente C, Lavela P, Tirado JL (2018) Exploring an aluminum ion battery based on molybdite as working electrode and ionic liquid as electrolyte. J Electrochem Soc 165(13):A2994–A29A9

Qiao J, Zhou H, Liu Z, Wen H, Yang J (2019) Defect-free soft carbon as cathode material for Al-ion batteries. Ionics 25(3):1235–1242

Qiao J, Zhou H, Liu Z, Wen H, Du J, Wei G et al (2020) Dense integration of graphene paper positive electrode materials for aluminum-ion battery. Ionics 26(1):245–254

Meng P, Huang J, Yang Z, Wang F, Lv T, Zhang J et al (2022) A low-cost and air-stable rechargeable aluminum-ion battery. Adv Mater 34(8):2106511

Wang S, Huang S, Yao M, Zhang Y, Niu Z (2020) Engineering active sites of polyaniline for AlCl2 (+) storage in an aluminum-ion battery. Angew Chem Int Ed Engl 59(29):11800–11807

Wang D, Hu H, Liao Y, Kong D, Cai T, Gao X et al (2020) High-performance aluminum-polyaniline battery based on the interaction between aluminum ion and -NH groups. Sci China Mater 64(2):318–328

Liao Y, Wang D, Li X, Tian S, Hu H, Kong D et al (2020) High performance aluminum ion battery using polyaniline/ordered mesoporous carbon composite. J Power Sources 477:228702

Meng J, Zhu L, Haruna AB, Ozoemena KI, Pang Q (2021) Charge storage mechanisms of cathode materials in rechargeable aluminum batteries. Sci China Chem 64(11):1888–1907

Zhang H, Huang L, Xu H, Zhang X, Chen Z, Gao C et al (2022) A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2:201–208

Mu P, Zhang H, Jiang H, Dong T, Zhang S, Wang C et al (2021) Bioinspired antiaging binder additive addressing the challenge of chemical degradation of electrolyte at cathode/electrolyte interphase. J Am Chem Soc 43:143

Wang C, Ma Y, Du X, Zhang H, Xu G, Cui G (2022) A polysulfide radical anions scavenging binder achieves long-life lithium–sulfur batteries. Battery Energy 1(3):20220010

Jiang M, Mu P, Zhang H, Dong T, Tang B, Qiu H et al (2022) An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett 14:87. https://doi.org/10.1007/s40820-022-00833-5

Peng Z, Yi X, Liu Z, Shang J, Wang D (2016) Triphenylamine-based metal–organic frameworks as cathode materials in lithium-ion batteries with coexistence of redox active sites, high working voltage, and high rate stability. ACS Appl Mater Interfaces 8(23):14578–14585

Yamamoto K, Suemasa D, Masuda K, Aita K, Endo T (2018) Hyperbranched triphenylamine polymer for ultrafast battery cathode. ACS Appl Mater Interfaces 10(7):6346–6353

Lian X, Zhao Z, Cheng D (2017) Recent progress on triphenylamine materials: synthesis, properties, and applications. Mol Cryst Liq Cryst 648(1):223–235

Chen Z, Su C, Zhu X, Xu R, Xu L, Zhang C (2018) Micro-/mesoporous conjugated polymer based on star-shaped triazine-functional triphenylamine framework as the performance-improved cathode of li-organic battery. J Polym Sci A Polym Chem 56(22):2574–2583

Mo L, Zhou G, Ge P, Miao Y-E, Liu T (2022) Flexible polytriphenylamine-based cathodes with reinforced energy-storage capacity for high-performance sodium-ion batteries. Sci China Mater 65(1):32–42

Ni W, Cheng J, Li X, Gu G, Huang L, Guan Q et al (2015) Polymeric cathode materials of electroactive conducting poly (triphenylamine) with optimized structures for potential organic pseudo-capacitors with higher cut-off voltage and energy density. RSC Adv 5(12):9221–9227

Li X, Zhang Y, Xing W, Li L, Xue Q, Yan Z (2016) Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors. J Power Sources 331:67–75

Pu X, Zhao D, Fu C, Chen Z, Cao S, Wang C et al (2021) Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew Chem 133(39):21480–21488