Spatial reticulate polytriphenylamine cathode material with enhanced capacity for rechargeable aluminum ion batteries
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yang H, Li H, Li J, Sun Z, He K, Cheng HM et al (2019) The rechargeable aluminum battery: opportunities and challenges. Angew Chem Int Ed Engl 58(35):11978–11996
Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935
Hu Y, Sun D, Luo B, Wang L (2019) Recent progress and future trends of aluminum batteries. Energy Technol 7(1):86–106
Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E et al (2016) An overview and future perspectives of aluminum batteries. Adv Mater 28(35):7564–7579
Lin M-C, Gong M, Lu B, Wu Y, Wang D-Y, Guan M et al (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):324–328
Zhou Q, Zheng Y, Wang D, Lian Y, Ban C, Zhao J et al (2020) Cathode materials in non-aqueous aluminum-ion batteries: progress and challenges. Ceram Int 46(17):26454–26465
Zhang K, Kirlikovali KO, Suh JM, Choi J-W, Jang HW, Varma RS et al (2020) Recent advances in rechargeable aluminum-ion batteries and considerations for their future progress. ACS Appl Energy Mater 3(7):6019–6035
Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F et al (2015) Binder-Free V2O5 Cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces 7(1):80–84
Wang S, Jiao S, Wang J, Chen HS, Tian D, Lei H et al (2016) High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 11(1):469–477
Nacimiento F, Cabello M, Alcántara R, Pérez-Vicente C, Lavela P, Tirado JL (2018) Exploring an aluminum ion battery based on molybdite as working electrode and ionic liquid as electrolyte. J Electrochem Soc 165(13):A2994–A29A9
Qiao J, Zhou H, Liu Z, Wen H, Yang J (2019) Defect-free soft carbon as cathode material for Al-ion batteries. Ionics 25(3):1235–1242
Qiao J, Zhou H, Liu Z, Wen H, Du J, Wei G et al (2020) Dense integration of graphene paper positive electrode materials for aluminum-ion battery. Ionics 26(1):245–254
Meng P, Huang J, Yang Z, Wang F, Lv T, Zhang J et al (2022) A low-cost and air-stable rechargeable aluminum-ion battery. Adv Mater 34(8):2106511
Wang S, Huang S, Yao M, Zhang Y, Niu Z (2020) Engineering active sites of polyaniline for AlCl2 (+) storage in an aluminum-ion battery. Angew Chem Int Ed Engl 59(29):11800–11807
Wang D, Hu H, Liao Y, Kong D, Cai T, Gao X et al (2020) High-performance aluminum-polyaniline battery based on the interaction between aluminum ion and -NH groups. Sci China Mater 64(2):318–328
Liao Y, Wang D, Li X, Tian S, Hu H, Kong D et al (2020) High performance aluminum ion battery using polyaniline/ordered mesoporous carbon composite. J Power Sources 477:228702
Meng J, Zhu L, Haruna AB, Ozoemena KI, Pang Q (2021) Charge storage mechanisms of cathode materials in rechargeable aluminum batteries. Sci China Chem 64(11):1888–1907
Zhang H, Huang L, Xu H, Zhang X, Chen Z, Gao C et al (2022) A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2:201–208
Mu P, Zhang H, Jiang H, Dong T, Zhang S, Wang C et al (2021) Bioinspired antiaging binder additive addressing the challenge of chemical degradation of electrolyte at cathode/electrolyte interphase. J Am Chem Soc 43:143
Wang C, Ma Y, Du X, Zhang H, Xu G, Cui G (2022) A polysulfide radical anions scavenging binder achieves long-life lithium–sulfur batteries. Battery Energy 1(3):20220010
Jiang M, Mu P, Zhang H, Dong T, Tang B, Qiu H et al (2022) An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett 14:87. https://doi.org/10.1007/s40820-022-00833-5
Peng Z, Yi X, Liu Z, Shang J, Wang D (2016) Triphenylamine-based metal–organic frameworks as cathode materials in lithium-ion batteries with coexistence of redox active sites, high working voltage, and high rate stability. ACS Appl Mater Interfaces 8(23):14578–14585
Yamamoto K, Suemasa D, Masuda K, Aita K, Endo T (2018) Hyperbranched triphenylamine polymer for ultrafast battery cathode. ACS Appl Mater Interfaces 10(7):6346–6353
Lian X, Zhao Z, Cheng D (2017) Recent progress on triphenylamine materials: synthesis, properties, and applications. Mol Cryst Liq Cryst 648(1):223–235
Chen Z, Su C, Zhu X, Xu R, Xu L, Zhang C (2018) Micro-/mesoporous conjugated polymer based on star-shaped triazine-functional triphenylamine framework as the performance-improved cathode of li-organic battery. J Polym Sci A Polym Chem 56(22):2574–2583
Mo L, Zhou G, Ge P, Miao Y-E, Liu T (2022) Flexible polytriphenylamine-based cathodes with reinforced energy-storage capacity for high-performance sodium-ion batteries. Sci China Mater 65(1):32–42
Ni W, Cheng J, Li X, Gu G, Huang L, Guan Q et al (2015) Polymeric cathode materials of electroactive conducting poly (triphenylamine) with optimized structures for potential organic pseudo-capacitors with higher cut-off voltage and energy density. RSC Adv 5(12):9221–9227
Li X, Zhang Y, Xing W, Li L, Xue Q, Yan Z (2016) Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors. J Power Sources 331:67–75