Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình không gian và các yếu tố xác định nghèo đói cấp làng ở đảo Marinduque, Philippines
Tóm tắt
Nghiên cứu này đã khám phá mô hình không gian và các yếu tố tiềm năng xác định nghèo đói cấp làng ở tỉnh Marinduque, Philippines. Sử dụng các biến số địa hình, khí hậu và kinh tế-xã hội đã được công bố, nó áp dụng phân tích không gian, hồi quy bình phương tối thiểu thông thường và hồi quy trọng số theo không gian (GWR) để xác định các mô hình và yếu tố ảnh hưởng đến nghèo đói trong tỉnh. Dựa trên kết quả, có sự xuất hiện của các cụm tỷ lệ nghèo đói cao-cao và thấp-cao trong tỉnh. Ngoài ra, trong số 18 biến đã được thử nghiệm, chỉ có 5 biến cho thấy ảnh hưởng đáng kể đến tỷ lệ nghèo đói. Các biến này bao gồm độ dốc, lượng mưa hàng năm, tỷ lệ tăng trưởng dân số, khoảng cách đến trung tâm thành phố và khoảng cách đến cảng. Tuy nhiên, kết quả từ GWR cho thấy rằng tác động của những biến này đến nghèo đói trong tỉnh thay đổi theo từng làng. Độ dốc và lượng mưa hàng năm là hai biến có ảnh hưởng lớn nhất đến tỷ lệ nghèo đói cấp làng, điều này cho thấy nghèo đói trong tỉnh bị ảnh hưởng mạnh mẽ bởi năng suất nông nghiệp hiện tại của nó.
Từ khóa
#nghèo đói #mô hình không gian #hồi quy #Marinduque #PhilippinesTài liệu tham khảo
Abrams, M. (2000). The advanced spaceborne thermal emission and reflection radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s terra platform. International Journal of Remote Sensing,21(5), 847–859. https://doi.org/10.1080/014311600210326.
Abrams, M., Tsu, H., Hulley, G., Iwao, K., Pieri, D., Cudahy, T., et al. (2015). The advanced spaceborne thermal emission and reflection radiometer (ASTER) after fifteen years: Review of global products. International Journal of Applied Earth Observation and Geoinformation,38, 292–301. https://doi.org/10.1016/j.jag.2015.01.013.
ADB. (2005). Poverty in the Philippines: Income, assets, and access. Manila: Asian Development Bank (ADB).
ADB. (2009). Poverty in the Philippines: Causes,constraints, and opportunities. Mandaluyong: Asian Development Bank (ADB).
ADB. (2017). Poverty in the Philippines. https://www.adb.org/countries/philippines/poverty. Accessed 21 Jan 2018.
Ahlström, A., Pilesjö, P., & Lindberg, J. (2011). Improved accessibility modeling and its relation to poverty—A case study in Southern Sri Lanka. Habitat International,35(2), 316–326. https://doi.org/10.1016/j.habitatint.2010.11.002.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control,19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705.
Albert, J. R. G. (2007). Household Vulnerability to Income Poverty (No. PIDS No. 2007–05) (p. 6). Makati City: Philippines Institute for Development Studies.
Albert, J. R. G., & Collado, P. M. (2004). Profile and determinants of poverty in the Philippines (p. 23). Presented at the 9 th national convention on statistics (NCS), EDSA Sharila Hotel, Manila, Philippines. http://nap.psa.gov.ph/ncs/9thncs/papers/poverty_Profile.pdf.
Almaden, C. R. C. (2015). Asset-based determinants of poverty intensity: A meso-level application in the Philippines. WSEAS Transactions on Business and Economics,12, 88–98.
Andriesse, E. (2017). Regional disparities in the Philippines: Structural drivers and policy considerations. Erdkunde,71(2), 97–110. https://doi.org/10.3112/erdkunde.2017.02.01.
Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis,27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.
Apparicio, P., Seguin, A., & Leloup, X. (2007). Modélisation spatiale de la pauvretéà Montréal: Apport méthodologique de la régression géographiquement pondérée. The Canadian Geographer/Le Géographe canadien,51(4), 412–427. https://doi.org/10.1111/j.1541-0064.2007.00189.x.
Baker, J. L., & Grosh, M. E. (1994). Poverty reduction through geographic targeting: How well does it work? World Development,22(7), 983–995. https://doi.org/10.1016/0305-750X(94)90143-0.
Benson, T., Chamberlin, J., & Rhinehart, I. (2005). An investigation of the spatial determinants of the local prevalence of poverty in rural Malawi. Special Issue: Poverty and Food Security Mapping,30(5), 532–550. https://doi.org/10.1016/j.foodpol.2005.09.004.
Bigman, D., Dercon, S., Guillaume, D., & Lambotte, M. (2000). Community targeting for poverty reduction in Burkina Faso. World Bank Economic Review,14(1), 167–193. https://doi.org/10.1093/wber/14.1.167.
Chen, X., Pei, Z., Chen, A. L., Wang, F., Shen, K., Zhou, Q., et al. (2015). Spatial distribution patterns and influencing factors of poverty—A case study on key country from national contiguous special poverty-stricken areas in China. Spatial Statistics Conference,2015(26), 82–90. https://doi.org/10.1016/j.proenv.2015.05.005.
Churchill, S. A., & Smyth, R. (2017). Ethnic diversity and poverty. World Development,95, 285–302. https://doi.org/10.1016/j.worlddev.2017.02.032.
de Dios, E. (2007). Local politics and local economy. In A. M. Balisacan & H. Hill (Eds.), The dynamics of regional development: The Philippines in East Asia. Quezon City: Ateneo de Manila University Press.
Dowling, J. M., & Chin-Fang, Y. (2009). Chronic poverty in Asia: Causes, consequences and policies. Singapore: World Scientific.
Elbers, C., Lanjouw, J. O., & Lanjouw, P. (2003). Micro-level estimation of poverty and inequality. Econometrica,71(1), 355–364.
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analisis of spatially varing relationships. Chichester: Wiley.
Glasmeier, A. K. (2002). One nation, pulling apart: The basis of persistent poverty in the USA. Progress in Human Geography,26(2), 155–173. https://doi.org/10.1191/0309132502ph362ra.
Henninger, N., & Shel, M. (2002). Where are the poor? Experiences with the development and use of poverty maps (p. 70). Washington, D.C.: World Resources Institute.
Hyman, G., Larrea, C., & Farrow, A. (2005). Methods, results and policy implications of poverty and food security mapping assessments. Special Issue: Poverty and Food Security Mapping,30(5), 453–460. https://doi.org/10.1016/j.foodpol.2005.10.003.
Ivanov, S. (2017). Population explosion: Dynamics, problems solutions. Mirovaya ekonomika i mezhdunarodnye otnosheniya,61(7), 15–26. https://doi.org/10.20542/0131-2227-2017-61-7-15-26.
Jackson, M. C., Huang, L., Xie, Q., & Tiwari, R. C. (2010). A modified version of Moran’s I. International Journal of Health Geographics,9, 33. https://doi.org/10.1186/1476-072X-9-33.
Lachniet, M. S., & Patterson, W. P. (2006). Use of correlation and stepwise regression to evaluate physical controls on the stable isotope values of Panamanian rain and surface waters. Journal of Hydrology,324(1–4), 115–140. https://doi.org/10.1016/j.jhydrol.2005.09.018.
Matthews, S., & Yang, T.-C. (2012). Mapping the results of local statistics: Using geographically weighted regression. Demographic Research,S13(6), 151–166.
Mellos, K. (1988). Neo-Malthusian theory. In K. Mellos (Ed.), Perspectives on ecology: A critical essay (pp. 15–42). London: Palgrave Macmillan. https://doi.org/10.1007/978-1-349-19598-5_2.
Mendoza, R. U., Beja, E. L., Venida, V. S., & Yap, D. B. (2012). Inequality in democracy: Insights from an empirical analysis of political dynasties in the 15th Philippine Congress. Philippine Political Science Journal,33(2), 132–145. https://doi.org/10.1080/01154451.2012.734094.
Michálek, A., & Madajová, M. S. (2018). Identifying regional poverty types in Slovakia. GeoJournal. https://doi.org/10.1007/s10708-018-9852-9.
Ofreneo, R. E. (2015). Growth and employment in de-industrializing Philippines. Journal of the Asia Pacific Economy,20(1), 111–129. https://doi.org/10.1080/13547860.2014.974335.
Ogneva-Himmelberger, Y., Pearsall, H., & Rakshit, R. (2009). Concrete evidence & geographically weighted regression: A regional analysis of wealth and the land cover in Massachusetts. Applied Geography,29(4), 478–487. https://doi.org/10.1016/j.apgeog.2009.03.001.
Okwi, P. O., Ndeng’e, G., Kristjanson, P., Arunga, M., Notenbaert, A., Omolo, A., et al. (2007). Spatial determinants of poverty in rural Kenya. Proceedings of the National Academy of Sciences,104(43), 16769. https://doi.org/10.1073/pnas.0611107104.
PSA. (2016). 2015 Full year official poverty statistics of the Philippines (p. 60). Quezon City: Philippine Statistics Authority.
PSA. (2017). CountrySTAT Philippines. Other crops; area planted or harvested. http://countrystat.psa.gov.ph/. Accessed 13 May 2017.
Quisumbing, A., & McNiven, S. (2010). Moving forward, looking back: The impact of migration and remittances on assets, consumption, and credit constraints in the rural Philippines. The Journal of Development Studies,46(1), 91–113. https://doi.org/10.1080/00220380903197960.
Reyes, C., & Due, E. (2009). Fighting poverty with facts community-based monitoring systems. Ottawa: International Development Research Centre. http://www.deslibris.ca/ID/432291.
Reyes, C., Mandap, A. B. E., Quilitis, J. A., Calubayan, S. J. I., Nabiong, J. L. Z., & Adudar, R. G. M., et al. (2017). The many faces of poverty: Volume 8 (p. 138). Manila: De La Salle University. https://www.pep-net.org/sites/pep-net.org/files/CBMS/Publications/Province_of_Marinduque_2014-2016_0.pdf.
Salvacion, A. R. (2016). Terrain characterization of small island using publicly available data and open-source software: a case study of Marinduque, Philippines. Modeling Earth Systems and Environment,2(1), 1–9. https://doi.org/10.1007/s40808-016-0085-y.
Salvacion, A. R., & Magcale-Macandog, D. B. (2015). Spatial analysis of human population distribution and growth in Marinduque Island, Philippines. Journal of Marine and Island Cultures,4(1), 27–33. https://doi.org/10.1016/j.imic.2015.06.003.
Sinding, S. W. (2009). Population, poverty and economic development. Philosophical Transactions of the Royal Society B: Biological Sciences,364(1532), 3023. https://doi.org/10.1098/rstb.2009.0145.
Slamet, I., Nugroho, N. F. T. A., & Muslich, (2017). Geographically weighted regression model on poverty indicator. Journal of Physics: Conference Series,943(1), 012009.
Tittonell, P., & Giller, K. E. (2013). When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Crop Yield Gap Analysis—Rationale, Methods and Applications,143, 76–90. https://doi.org/10.1016/j.fcr.2012.10.007.
Vista, B. M., & Murayama, Y. (2011). Spatial determinants of poverty using GIS-based mapping. In Y. Murayama & R. B. Thapa (Eds.), Spatial analysis and modeling in geographical transformation process: GIS-based applications (pp. 275–296). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-0671-2_16.
Vista, B. M., Nel, E., & Binns, T. (2012). Land, landlords and sustainable livelihoods: The impact of agrarian reform on a coconut hacienda in the Philippines. Land Use Policy,29(1), 154–164. https://doi.org/10.1016/j.landusepol.2011.06.002.
Wang, Y., Dianting, W., Wang, M., & Zhou, L. (2018). Density, distance, and division: Rural poverty in a developing-country context. Growth and Change. https://doi.org/10.1111/grow.12250.
Wang, Y., & Zhang, J. (2017). Integrating BP and MGWR-SL model to estimate village-level poor population: An experimental study from Qianjiang, China. Social Indicators Research. https://doi.org/10.1007/s11205-017-1681-6.
Yang, D., & Choi, H. (2007). Are remittances insurance? Evidence from rainfall shocks in the Philippines. The World Bank Economic Review,21(2), 219–248. https://doi.org/10.1093/wber/lhm003.
Young, S. G., & Jensen, R. R. (2012). Statistical and visual analysis of human West Nile virus infection in the United States, 1999–2008. Applied Geography,34, 425–431. https://doi.org/10.1016/j.apgeog.2012.01.008.
Yudhistira, M. H., & Sofiyandi, Y. (2017). Seaport status, port access, and regional economic development in Indonesia. Maritime Economics & Logistics. https://doi.org/10.1057/s41278-017-0089-1.
Zhou, L., & Xiong, L.-Y. (2018). Natural topographic controls on the spatial distribution of poverty-stricken counties in China. Applied Geography,90, 282–292. https://doi.org/10.1016/j.apgeog.2017.10.006.