Spatial latent class analysis model for spatially distributed multivariate binary data
Tài liệu tham khảo
Alvarez, R.M., Nagler, J., 2001. Correlated disturbances in discrete choice models: A comparison of multinomial probit and logit models. Working Paper at California Institute of Technology, Division of the Humanities and Social Sciences
Bandeen-Roche, 1997, Latent variable regression for multiple discrete outcomes, Journal of the American Statistical Association, 92, 1375, 10.2307/2965407
Beron, 2004, Probit in a spatial context: A Monte Carlo analysis, 169
Besag, 1974, Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society, Series B, 23, 192
Bolduc, 1992, Generalized autoregressive errors in the multinomial probit model, Transportation Research B, 26, 155, 10.1016/0191-2615(92)90005-H
Bolduc, 1999, A practical technique to estimate multinomial probit models in transportation, Transportation Research B, 33, 63, 10.1016/S0191-2615(98)00028-9
Bolduc, 1997, Multinomial probit estimation of spatially interdependent choices: An empirical comparison of two new techniques, International Regional Science Review, 20, 77, 10.1177/016001769702000105
Bunch, 1991, Estimability in the multinomial probit model, Transportation Research B, 25, 1, 10.1016/0191-2615(91)90009-8
Carlin, 2008
Celeux, 2006, Deviance information criteria for missing data models, Bayesian Analysis, 4, 651, 10.1214/06-BA122
Cheng, 2007, Testing for IIA in the multinomial logit model, Sociological Methods and Research, 35, 583, 10.1177/0049124106292361
Clogg, 1984, Latent structure analysis of a set of multidimensional contingency tables, Journal of the American Statistical Association, 79, 762, 10.2307/2288706
Daganzo, 1979
Dey, 1995, A Bayesian predictive approach to determining the number of components in a mixture distribution, Statistics and Computing, 5, 297, 10.1007/BF00162502
Diggle, 1998, Model-based geostatistics (with discussion), Applied Statistics, 47, 299
Gelfand, 2003, Proper multivariate conditional autoregressive models for spatial data analysis, Biostatistics, 4, 11, 10.1093/biostatistics/4.1.11
Green, 1995, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711, 10.1093/biomet/82.4.711
Grzebyk, 1994, Multivariate analysis and spatial/temporal scales: real and complex models, 19
Holloway, 2002, Bayesian spatial probit estimation: A primer and an application to HYV rice adoption, Agricultural Economics, 27, 383, 10.1111/j.1574-0862.2002.tb00127.x
Jin, 2005, Generalized hierarchical multivariate CAR models for areal data, Biometrics, 61, 950, 10.1111/j.1541-0420.2005.00359.x
Komac, M., Sajn, R., 2001. Polluted or nonpolluted—A fuzzy approach determining soil pollution. In: Proceeding of the Annual Conference of the International Association for Mathematical Geology
Lacy, 1999, The vote-stealing and turnout effects of Ross Perot in the 1992 US presidential election, American Journal of Political Science, 43, 233, 10.2307/2991792
Mardia, 1993, Spatial-temporal analysis of multivariate environmental monitoring data, 347
McCutcheon, 1987
McFadden, 1981, An application of diagnostic tests for the independence from irrelevant alternatives property of the multinomial logit model, Transportation Research Board Record, 637, 39
McMillen, 1992, Probit with spatial autocorrelation, Journal of Regional Science, 32, 335, 10.1111/j.1467-9787.1992.tb00190.x
Mohammadian, A., Haider, M., Kanaroglou, P., 2005. Incorporating observed spatial dependencies in random parameter discrete choice models. In: Proceedings of the 84th Annual Meeting of the Transportation Research Board, Washington DC
Muthen, 1998
Reboussin, 1999, Estimating equations for a latent transition model with multiple discrete indicators, Biometrics, 55, 839, 10.1111/j.0006-341X.1999.00839.x
Schmidheiny, K., 2003. Income segregation and local progressive taxation: Empirical evidence from Switzerland. Working Paper, Diskussionsschriften dp0311, Universitaet Bern, Departement Volkswirtschaft
Smith, 2004, A Bayesian probit model with spatial dependencies
Spiegelhalter, 2002, Bayesian measures of model complexity and fit (with discussion), J. Roy. Statist. Soc., Ser. B, 64, 583, 10.1111/1467-9868.00353
Spiegelhalter, D.J., Thomas, A., Best, N., Lunn, D., 2004. Winbugs version 1.4.1 manual. http://www.mrc-bsu.cam.ac.uk/bugs
Wackernagel, 2003