Spatial household preferences of decentralized solar photovoltaic and thermal systems
Tài liệu tham khảo
Adib, R., Zervos, A., Eckhart, M., David, M.E.-A., Kirsty, H., Rae, H.P., Bariloche, F., 2020. REN21. 2020. [WWW Document]. URL https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf (accessed 3.1.21).
Bellera, 2007, A method is presented to plan the required sample size when estimating regression-based reference limits, J. Clin. Epidemiol., 60, 610, 10.1016/j.jclinepi.2006.09.004
Best, 2019, Understanding the determinants of rooftop solar installation: evidence from household surveys in Australia, Aust. J. Agric. Resour. Econ., 63, 922, 10.1111/1467-8489.12319
Bishop, 2006
Bollinger, 2012, Peer effects in the diffusion of solar photovoltaic panels, Mark. Sci., 31, 900, 10.1287/mksc.1120.0727
2019, Property-level solar panel data report [WWW document], CAPE Anal
Choupani, 2016, Population synthesis using iterative proportional fitting (IPF): a review and future research, 223
Crump, 2013, Evaluating Amazon's mechanical turk as a tool for experimental behavioral research, PLoS ONE, 8, 10.1371/journal.pone.0057410
Davidson, J.H., 2005. Low-temperature solar thermal systems: an untapped energy resource in the United States. https://doi.org/10.1115/1.1940659.
DSIRE [WWW Document], 2021a. URL https://programs.dsireusa.org/system/program/ma/solar (accessed 10.22.21).
DSIRE [WWW Document], 2021b. URL https://programs.dsireusa.org/system/program/ga/solar (accessed 10.22.21).
Gagnon, 2019
Haas, 1999, Socio-economic aspects of the Austrian 200 kWp-photovoltaic-rooftop programme, Sol. Energy, 66, 183, 10.1016/S0038-092X(99)00019-5
IEA, 2020. Renewables 2020: analysis and forecast to 2025 [WWW document]. URL https://iea.blob.core.windows.net/assets/1a24f1fe-c971-4c25-964a-57d0f31eb97b/Renewables_2020-PDF.pdf (accessed 5.12.21).
Jager, 2006, Stimulating the diffusion of photovoltaic systems: a behavioural perspective, Energy Policy, 34, 1935, 10.1016/j.enpol.2004.12.022
James, 2013, 103
Kolenikov, 2016, Post-stratification or non-response adjustment?, Surv. Pract., 9, 10.29115/SP-2016-0014
Korcaj, 2015, Intentions to adopt photovoltaic systems depend on homeowners’ expected personal gains and behavior of peers, Renew. Energy, 75, 407, 10.1016/j.renene.2014.10.007
Lanza, 2007, PROC LCA: a SAS procedure for latent class analysis, Struct. Equ. Model., 14, 671, 10.1080/10705510701575602
Lee, 2018, Social preferences for small-scale solar photovoltaic power plants in South Korea: a choice experiment study, Sustainability, 10, 3589, 10.3390/su10103589
Lu, 2019, Decentralized water collection systems for households and communities: household preferences in Atlanta and Boston, Water Res, 167, 10.1016/j.watres.2019.115134
Mangham, 2009, How to do (or not to do)...Designing a discrete choice experiment for application in a low-income country, Health Policy Plan, 10.1093/heapol/czn047
Matisoff, 2017, The comparative effectiveness of residential solar incentives, Energy Policy, 108, 44, 10.1016/j.enpol.2017.05.032
Nylund, 2007, Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study, Struct. Equ. Model., 14, 535, 10.1080/10705510701575396
Palm, 2016, Local factors driving the diffusion of solar photovoltaics in Sweden: a case study of five municipalities in an early market, Energy Res. Soc. Sci., 14, 1, 10.1016/j.erss.2015.12.027
Rai, 2016, Overcoming barriers and uncertainties in the adoption of residential solar PV, Renew. Energy, 89, 498, 10.1016/j.renene.2015.11.080
Rai, 2013, Effective information channels for reducing costs of environmentally- friendly technologies: evidence from residential PV markets, Environ. Res. Lett., 8, 10.1088/1748-9326/8/1/014044
Reeves, 2017, Evolution of consumer information preferences with market maturity in solar PV adoption, Environ. Res. Lett., 12, 10.1088/1748-9326/aa6da6
SAS, 2012. JMP® 10 design of experiments guide.
Schelly, 2014, Residential solar electricity adoption: what motivates, and what matters? A case study of early adopters, Energy Res. Soc. Sci., 2, 183, 10.1016/j.erss.2014.01.001
Schelly, 2010, Testing residential solar thermal adoption, Environ. Behav., 42, 151, 10.1177/0013916508327867
SEIA [WWW Document], 2020. URL https://www.seia.org/states-map (accessed 10.11.21).
SolarWorld Grid-Tie [WWW Document], 2021. URL https://shop.solardirect.com/index.php?SolarWorld&cPath=23_161_164_246_376 (accessed 9.19.21).
Sun, 2020, Consumer attitude and purchase intention toward rooftop photovoltaic installation: the roles of personal trait, psychological benefit, and government incentives, Energy Environ, 31, 21, 10.1177/0958305X17754278
Uggeldahl, 2016, Choice certainty in discrete choice experiments: will eye tracking provide useful measures?, J. Choice Model., 20, 35, 10.1016/j.jocm.2016.09.002
Vermunt, 2002, An expectation-maximization algorithm for generalised linear three-level models [WWW document]
Vermunt, 2005, Technical guide for latent GOLD 4.0 : basic and advanced [WWW document], Stat. Innov. Inc. URL
Watson, 2017, Discrete choice experiment response rates: a meta-analysis, Health Econ, 26, 810, 10.1002/hec.3354
Weiss, W., Spörk-Dür, M., 2020. IEA solar heating & cooling solar heat worldwide detailed market data 2018- 2020 edition global market development and trends in 2019 [WWW document]. URL https://www.iea-shc.org/Data/Sites/1/publications/Solar-Heat-Worldwide-2020.pdf (accessed 5.12.21).
Woersdorfer, 2011, Will nonowners follow pioneer consumers in the adoption of solar thermal systems? Empirical evidence for northwestern Germany, Ecol. Econ., 70, 2282, 10.1016/j.ecolecon.2011.04.005
Wolske, 2017, Explaining interest in adopting residential solar photovoltaic systems in the United States: toward an integration of behavioral theories, Energy Res. Soc. Sci., 25, 134, 10.1016/j.erss.2016.12.023