Spatial frequency processing and its modulation by emotional content in severe alcohol use disorder

Psychopharmacology - Tập 239 Số 8 - Trang 2647-2657 - 2022
Coralie Creupelandt1, Pierre Maurage1, Bruno R. Bocanegra2, Sébastien Szaffarczyk3, Philippe de Timary4, Jory Deleuze5, Carine Lambot5, Fabien D’Hondt6
1Louvain Experimental Psychopathology Research Group (UCLEP), Psychological Sciences Research Institute (IPSY), UCLouvain, B-1348, Louvain-la-Neuve, Belgium
2Department of Psychology, Educational, and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
3Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France
4Department of Adult Psychiatry, Saint-Luc Academic Hospital, B-1200, Brussels, Belgium
5Le Beau Vallon, B-5002, Saint-Servais, Belgium
6CURE, Service de Psychiatrie de L’enfant Et de L’adolescent, Hôpital Fontan 1, Clinique de Psychiatrie, CHU Lille, CS 70001, F-59000, Lille, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596

Andre JT (1996) Visual functioning in challenging conditions: effects of alcohol consumption, luminance, stimulus motion, and glare on contrast sensitivity. J Exp Psychol Appl 2:250–269. https://doi.org/10.1037/1076-898X.2.3.250

Babor TF, Higgins-Biddle JC, Saunders JB, Monteiro MG (2001) AUDIT: the Alcohol Use Disorders Identification Test: guidelines for use in primary health care, 2nd edn. World Health Organization, Geneva

Bach M (1996) The Freiburg Visual Acuity test — automatic measurement of visual acuity. Optom vis Sci 73:49–53. https://doi.org/10.1097/00006324-199601000-00008

Bach M (2007) The Freiburg Visual Acuity Test-variability unchanged by post-hoc re-analysis. Graefes Arch Clin Exp Ophthalmol 245:965–971. https://doi.org/10.1007/s00417-006-0474-4

Bagga D, Sharma A, Kumari A et al (2014) Decreased white matter integrity in fronto-occipital fasciculus bundles: relation to visual information processing in alcohol-dependent subjects. Alcohol 48:43–53. https://doi.org/10.1016/j.alcohol.2013.10.009

Bar M (2004) Visual objects in context. Nat Rev Neurosci 5:617–629. https://doi.org/10.1038/nrn1476

Beck AT, Steer RA, Brown GK (1996) BDI-II: Beck Depression Inventory Manual., 2nd edn. Psychological Corporation, San Antonio, TX

Bocanegra BR, Zeelenberg R (2009) Emotion improves and impairs early vision. Psychol Sci 20:707–713. https://doi.org/10.1111/j.1467-9280.2009.02354.x

Bora E, Zorlu N (2017) Social cognition in alcohol use disorder: a meta-analysis. Addiction 112:40–48. https://doi.org/10.1111/add.13486

Braun CM, Richer M (1993) A comparison of functional indexes, derived from screening tests, of chronic alcoholic neurotoxicity in the cerebral cortex, retina and peripheral nervous system. J Stud Alcohol 54:11–16. https://doi.org/10.15288/jsa.1993.54.11

Campbell FW, Robson JG (1968) Application of fourier analysis to the visibility of gratings. J Physiol 197:551–566. https://doi.org/10.1113/jphysiol.1968.sp008574

Caplette L, West G, Gomot M et al (2014) Affective and contextual values modulate spatial frequency use in object recognition. Front Psychol 5:512. https://doi.org/10.3389/fpsyg.2014.00512

Casares-López M, Castro-Torres JJ, Martino F et al (2020) Contrast sensitivity and retinal straylight after alcohol consumption: effects on driving performance. Sci Rep 10:13599. https://doi.org/10.1038/s41598-020-70645-3

Cavalcanti-Galdino MK, da Silva JA, Mendes LC et al (2014) Acute effect of alcohol intake on sine-wave Cartesian and polar contrast sensitivity functions. Braz J Med Biol Res 47:321–327. https://doi.org/10.1590/1414-431X20143209

Chambers JL, Wilson WT (1968) Perception of apparent motion and degree of mental pathology. Percept Mot Skills 26:855–861. https://doi.org/10.2466/pms.1968.26.3.855

Collin CA, Therrien M, Martin C, Rainville S (2006) Spatial frequency thresholds for face recognition when comparison faces are filtered and unfiltered. Percept Psychophys 68:879–889. https://doi.org/10.3758/BF03193351

Creupelandt C, D’Hondt F, Bocanegra B, et al (2022) Visual abilities in Severe Alcohol Use Disorder: Preserved spatial but impaired temporal resolution. J Psychiat Res 149:201–208. https://doi.org/10.1016/j.jpsychires.2022.02.040

Creupelandt C, D’Hondt F, Maurage P (2021a) Neural correlates of visuoperceptive changes in severe alcohol use disorder: a critical review of neuroimaging and electrophysiological findings. J Neurosci Res 99:1253–1275. https://doi.org/10.1002/jnr.24799

Creupelandt C, Maurage P, D’Hondt F (2021) Visuoperceptive impairments in severe alcohol use disorder: a critical review of behavioral studies. Neuropsychol Rev 31:361–384. https://doi.org/10.1007/s11065-020-09469-x

Creupelandt C, Maurage P, Lenoble Q et al (2021) Magnocellular and parvocellular mediated luminance contrast discrimination in severe alcohol use disorder. Alcohol Clin Exp Res 45:375–385. https://doi.org/10.1111/acer.14541

Cruz ÉDN da, Andrade MJO de, Cavalcanti-Gaudino MK et al (2016) Effects of chronic alcoholism in the sensitivity to luminance contrast in vertical sinusoidal gratings. Psicologia: Reflexão e Crítica 29. https://doi.org/10.1186/s41155-016-0023-y

Demmin DL, Fradkin SI, Silverstein SM (2019) Remediation of visual processing impairments in schizophrenia: where we are and where we need to be. Curr Behav Neurosci Rep 6:13–20. https://doi.org/10.1007/s40473-019-00171-8

de Oliveira Castro AJ, Rodrigues AR, Côrtes MIT, de Lima Silveira LC (2009) Impairment of color spatial vision in chronic alcoholism measured by psychophysical methods. Psychol Neurosci 2:179–187. https://doi.org/10.3922/j.psns.2009.2.009

De Valois RL, Cottaris NP, Mahon LE et al (2000) Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vision Res 40:3685–3702. https://doi.org/10.1016/S0042-6989(00)00210-8

De Valois RL, De Valois KK (1988) Spatial vision. Oxford University Press, New York

Dosher B, Lu Z-L (2017) Visual perceptual learning and models. Annu Rev vis Sci 3:343–363. https://doi.org/10.1146/annurev-vision-102016-061249

Ekman P, Hager JC, Friesen WV (2002) Facial action coding system: the manual. Research Nexus, Salt Lake City

Fein G, Shimotsu R, Chu R, Barakos J (2009) Parietal gray matter volume loss is related to spatial processing deficits in long-term abstinent alcoholic men. Alcohol Clin Exp Res 33:1806–1814. https://doi.org/10.1111/j.1530-0277.2009.01019.x

Ferneyhough E, Stanley DA, Phelps EA, Carrasco M (2010) Cuing effects of faces are dependent on handedness and visual field. Psychon Bull Rev 17:529–535. https://doi.org/10.3758/PBR.17.4.529

Goldstein EB (2010) Sensation and perception, 8th edn. Wadsworth, Cengage Learning, Belmont, California

Hartung B, Schwender H, Ritz-Timme S et al (2020) Ophthalmologic examinations under the acute influence of alcohol. Leg Med 46:101722. https://doi.org/10.1016/j.legalmed.2020.101722

Hoffman LA, Lewis B, Nixon SJ (2019) Neurophysiological and interpersonal correlates of emotional face processing in alcohol use disorder. Alcohol Clin Exp Res 43:1928–1936. https://doi.org/10.1111/acer.14152

Kapitany T, Dietzel M, Grunberger J et al (1993) Color vision deficiencies in the course of acute alcohol withdrawal. Biol Psychiatry 33:415–422. https://doi.org/10.1016/0006-3223(93)90169-E

Kleiner M, Brainard D, Pelli D (2007) What’s new in Psychtoolbox-3? Perception 36. https://doi.org/10.1177/03010066070360S101

Kravitz DJ, Saleem KS, Baker CI et al (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17:26–49. https://doi.org/10.1016/j.tics.2012.10.011

Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230. https://doi.org/10.1038/nrn3008

Langner O, Dotsch R, Bijlstra G et al (2010) Presentation and validation of the Radboud Faces Database. Cogn Emot 24:1377–1388. https://doi.org/10.1080/02699930903485076

Leonova A, Pokorny J, Smith VC (2003) Spatial frequency processing in inferred PC- and MC-pathways. Vision Res 43:2133–2139. https://doi.org/10.1016/S0042-6989(03)00333-X

Liebowitz MR (1987) Social Phobia. Mod Probl Pharmacopsychiatry 22:141–173. https://doi.org/10.1159/000414022

Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749. https://doi.org/10.1126/science.3283936

Loftus GR, Harley EM (2004) How different spatial-frequency components contribute to visual information acquisition. J Exp Psychol Hum Percept Perform 30:104–118. https://doi.org/10.1037/0096-1523.30.1.104

Mackey S, Allgaier N, Chaarani B et al (2019) Mega-analysis of gray matter volume in substance dependence: general and substance-specific regional effects. Am J Psychiatry 176:119–128. https://doi.org/10.1176/appi.ajp.2018.17040415

Macmillan NA, Creelman CD (2004) Detection Theory: A User’s Guide, 2nd ed. Psychology Press, New York.https://doi.org/10.4324/9781410611147

Martino F, Castro-Torres JJ, Casares-López M et al (2021) Deterioration of binocular vision after alcohol intake influences driving performance. Sci Rep 11:8904. https://doi.org/10.1038/s41598-021-88435-w

Martins ICVDS, Souza GDS, Brasil A et al (2019) Psychophysical evaluation of visual functions of ex-alcoholic subjects after prolonged abstinence. Front Neurosci 13:179. https://doi.org/10.3389/fnins.2019.00179

Mergler D, Blain L, Lemaire J, Lalande F (1988) Colour vision impairment and alcohol consumption. Neurotoxicol Teratol 10:255–260. https://doi.org/10.1016/0892-0362(88)90025-6

Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402. https://doi.org/10.1146/annurev.ne.16.030193.002101

Miller GA, Chapman JP (2001) Misunderstanding analysis of covariance. J Abnorm Psychol 110:40–48. https://doi.org/10.1037/0021-843X.110.1.40

Morrison DJ, Schyns PG (2001) Usage of spatial scales for the categorization of faces, objects, and scenes. Psychon Bull Rev 8:454–469. https://doi.org/10.3758/BF03196180

Newen A, Vetter P (2017) Why cognitive penetration of our perceptual experience is still the most plausible account. Conscious Cogn 47:26–37. https://doi.org/10.1016/j.concog.2016.09.005

Nirody JA (2014) Development of spatial coarse-to-fine processing in the visual pathway. J Comput Neurosci 36:401–414. https://doi.org/10.1007/s10827-013-0480-6

Panichello MF, Cheung OS, Bar M (2013) Predictive feedback and conscious visual experience. Front Psychol 3:620. https://doi.org/10.3389/fpsyg.2012.00620

Phelps EA, Ling S, Carrasco M (2006) Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychol Sci 17:292–299. https://doi.org/10.1111/j.1467-9280.2006.01701.x

Pillunat LE, Christ T, Luderer HJ, Stodtmeister R (1985) Flicker fusion frequency and organic syndrome in alcoholics. Percept Mot Skills 60:487–494. https://doi.org/10.2466/pms.1985.60.2.487

Purushothaman G, Chen X, Yampolsky D, Casagrande VA (2014) Neural mechanisms of coarse-to-fine discrimination in the visual cortex. J Neurophysiol 112:2822–2833. https://doi.org/10.1152/jn.00612.2013

Rando K, Hong K-I, Bhagwagar Z et al (2011) Association of frontal and posterior cortical gray matter volume with time to alcohol relapse: a prospective study. Am J Psychiatry 168:183–192. https://doi.org/10.1176/appi.ajp.2010.10020233

Roquelaure Y, Le Gargasson JF, Kupper S et al (1995) Alcohol consumption and visual contrast sensitivity. Alcohol Alcohol 30:681–685. https://doi.org/10.1093/oxfordjournals.alcalc.a045781

Spielberger CD, Gorsuch RL, Lusthene R et al (1983) Manual for the state-trait anxiety inventory. Consulting Psychology Press, Palo Alto

Vinogradov S, Fisher M, de Villers-Sidani E (2012) Cognitive training for impaired neural systems in neuropsychiatric illness. Neuropsychopharmacology 37:43–76. https://doi.org/10.1038/npp.2011.251

Vuilleumier P, Armony JL, Driver J, Dolan RJ (2003) Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat Neurosci 6:624–631. https://doi.org/10.1038/nn1057

Wandell BA (1995) Foundations of vision. Sinauer Associates, Sunderland, Massachussetts

Wang J, Fan Y, Dong Y et al (2018) Combining gray matter volume in the cuneus and the cuneus-prefrontal connectivity may predict early relapse in abstinent alcohol-dependent patients. PLoS ONE 13:e0196860. https://doi.org/10.1371/journal.pone.0196860

Wegner AJ, Gunthner A, Fahle M (2001) Visual performance and recovery in recently detoxified alcoholics. Alcohol Alcohol 36:171–179. https://doi.org/10.1093/alcalc/36.2.171

Willenbockel V, Sadr J, Fiset D et al (2010) Controlling low-level image properties: The SHINE toolbox. Behav Res Methods 42:671–684. https://doi.org/10.3758/BRM.42.3.671

Williams DE (1984) Visual electrophysiology and psychophysics in chronic alcoholics and in patients on tuberculostatic chemotherapy. Am J Optom Physiol Opt 61:576–585. https://doi.org/10.1097/00006324-198409000-00007

Winston JS, Vuilleumier P, Dolan RJ (2003) Effects of low-spatial frequency components of fearful faces on fusiform cortex activity. Curr Biol 13:1824–1829. https://doi.org/10.1016/j.cub.2003.09.038