Phân bố không gian của các xu hướng đơn hướng trong khí hậu và hiện tượng thời tiết cực đoan ở lưu vực sông Nile

Springer Science and Business Media LLC - Tập 137 - Trang 1181-1199 - 2018
Mohamed Salem Nashwan1,2, Shamsuddin Shahid1
1School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, , Malaysia
2College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Cairo, Egypt

Tóm tắt

Phát hiện gần đây về ảnh hưởng của sự tồn tại kéo dài trong thời gian (LTP) lên độ ý nghĩa của xu hướng đã khiến cho những phát hiện trước đây về xu hướng khí hậu ở lưu vực sông Nile (NRB) trở nên gây tranh cãi. Bốn phiên bản của bài kiểm tra Mann-Kendall, bao gồm phiên bản mới nhất xem xét LTP trong chuỗi thời gian, đã được sử dụng trong nghiên cứu này để phân biệt xu hướng đơn hướng khỏi biến đổi tự nhiên của khí hậu ở NRB. Dữ liệu khí tượng toàn cầu từ Princeton với độ phân giải tạm thời và không gian lần lượt là 1 ngày và 0.25°, cho giai đoạn 1948–2010, đã được sử dụng. Kết quả cho thấy số lượng điểm lưới cho thấy sự thay đổi đáng kể trong khí hậu và các hiện tượng thời tiết cực đoan đã giảm mạnh khi xem xét LTP trong chuỗi thời gian. Lượng mưa hàng năm chỉ đang tăng tại một số vị trí ở lưu vực chính của sông Nile và lưu vực Atbara với tốc độ từ 0.26 đến 26.4 mm/ thập kỷ trong khi giảm ở lưu vực Sobat lên đến -76.6 mm/ thập kỷ. Nhiệt độ cao nhất ở các khu vực chính của sông Nile, Atbara, Blue Nile, Bahr Elgazal và Bahr Eljabel đang tăng với tốc độ từ 0.09 đến 0.48 °C/ thập kỷ, trong khi nhiệt độ thấp nhất đang gia tăng ở hầu hết các vùng của NRB với tốc độ từ 0.17 đến 0.50 °C/ thập kỷ. Trong số các hiện tượng thời tiết cực đoan, một xu hướng đáng kể trên diện rộng của NRB đã được tìm thấy đối với số ngày mưa cực đoan (-0.53 đến 0.75 ngày/ thập kỷ), đêm lạnh (-6.05 đến 3.26 ngày/ thập kỷ), sóng nhiệt (0.29 đến 2.00 ngày/ thập kỷ), và sóng lạnh (-4.05 đến 1.15 ngày/ thập kỷ).

Từ khóa

#khí hậu #hiện tượng thời tiết cực đoan #lưu vực sông Nile #xu hướng đơn hướng #kiểm tra Mann-Kendall #dữ liệu khí tượng

Tài liệu tham khảo

Abtew W, Melesse AM (2014) The Nile River Basin. In: Melesse AM, Abtew W, Setegn SG (eds) Nile River Basin: Ecohydrological Challenges, Climate Change and Hydropolitics. Springer International Publishing, Cham, pp 7–21. https://doi.org/10.1007/978-3-319-02720-3_2 Ahram (2015) Rainfall, thunder expected in Egypt on New Year’s Eve. Ahram Online. http://english.ahram.org.eg/News/177579.aspx. Accessed 11/08/2017 Alemu H, Kaptue AT, Senay GB, Wimberly MC, Henebry GM (2015) Evapotranspiration in the Nile basin: identifying dynamics and drivers, 2002-2011. Water 7:4914–4931. https://doi.org/10.3390/w7094914 Aloysius N, Saiers J (2017) Simulated hydrologic response to projected changes in precipitation and temperature in the Congo river basin. Hydrol Earth Syst Sci 21:4115–4130. https://doi.org/10.5194/hess-21-4115-2017 Awange JL, Mpelasoka F, Goncalves RM (2016) When every drop counts: analysis of droughts in Brazil for the 1901-2013 period. Sci Total Environ 566:1472–1488. https://doi.org/10.1016/j.scitotenv.2016.06.031 Awulachew SB (2012) The Nile river basin: water, agriculture, governance and livelihoods. Routledge, UK Berhanu B, Seleshi Y, Amare M, Melesse AM (2016) Upstream–downstream linkages of hydrological processes in the Nile river basin. In: Melesse AM, Abtew W (eds) Landscape dynamics, soils and hydrological processes in varied climates. Springer International Publishing, Cham, pp 207–223. https://doi.org/10.1007/978-3-319-18787-7_11 Camberlin P (1995) June-September rainfall in north-eastern Africa and atmospheric signals over the tropics: a zonal perspective. Int J Climatol 15:773–783 Camberlin P (2009) Nile basin climates. In: Dumont HJ (ed) The Nile: origin, environments, limnology and human use. Monographiae Biologicae. Springer Netherlands, Dordrecht, pp 307–333. https://doi.org/10.1007/978-1-4020-9726-3_16 Carpenter SR, Stanley EH, Vander Zanden MJ (2011) State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour 36:75–99 Cheung WH, Senay GB, Singh A (2008) Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int J Climatol 28:1723–1734. https://doi.org/10.1002/joc.1623 Di Baldassarre G et al (2011) Future hydrology and climate in the River Nile basin: a review. Hydrol Sci J 56:199–211. https://doi.org/10.1080/02626667.2011.557378 Domroes M, El-Tantawi A (2005) Recent temporal and spatial temperature changes in Egypt. Int J Climatol 25:51–63. https://doi.org/10.1002/joc.1114 Elmallah ES, Elsharkawy SG (2011) Influence of circulation indices upon winter temperature variability in Egypt. J Atmos Sol Terr Phys 73:439–448. https://doi.org/10.1016/j.jastp.2010.10.013 Feteha A (2015) Egypt, Sudan heat waves kill 108 people in August, authorities blaming climate change. M&G Africa. http://mgafrica.com/article/2015-08-16-egypt-sudan-heat-wave-kills-108-people-in-august-authorities-blame-climate-change. Accessed 6 Dec 2017 Gebremicael TG, Mohamed YA, Van Zaag P, Hagos EY (2017) Temporal and spatial changes of rainfall and streamflow in the upper Tekeze-Atbara river basin, Ethiopia. Hydrol Earth Syst Sci 21:2127–2142. https://doi.org/10.5194/hess-21-2127-2017 Goswami BN, Kripalani RH, Borgaonkar HP, Preethi B (2015) Multi-Decadal Variability in Indian Summer Monsoon Rainfall Using Proxy Data. In: Chih-Pei C, Michael G, Mojib L, Wallace JM (eds) Climate Change: Multidecadal and Beyond. World Scientific Publishing Co., Singapore. https://doi.org/10.1142/9789814579933_0021 Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009 Hamed KH (2009) Effect of persistence on the significance of Kendall’s tau as a measure of correlation between natural time series. Eur Phys J Spec Top 174:65–79. https://doi.org/10.1140/epjst/e2009-01090-x Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196. https://doi.org/10.1016/S0022-1694(97)00125-X Hipel KW, McLeod AI (1994) Time series modelling of water resources and environmental systems vol 45. Developments in Water Science. Elsevier Science, The Netherlands Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence Water Resources Research 20:727–732 IFRC (2017) Emergency plan of action final report, Egypt: Floods. International Federation of Red Cross and Red Crescent Societies. https://reliefweb.int/sites/reliefweb.int/files/resources/MDREG013dfr.pdf. Accessed 26 Apr 2018 Iliopoulou T, Papalexiou SM, Markonis Y, Koutsoyiannis D (2016) Revisiting long-range dependence in annual precipitation. J Hydrol 556:891–900. https://doi.org/10.1016/j.jhydrol.2016.04.015 IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp Jiménez Cisneros BE, Oki T, Arnell NW, Benito G, Cogley JG, D?ll P, Jiang T, Mwakalila SS (2014) Freshwater resources:. Climate Change 2014: Impacts, Adaptation, and Vulnerability. In: Field CB, Barros VR, Dokken DJ et al. (eds) Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 229–269 Kebede A, Diekkruger B, Edossa DC (2017) Dry spell, onset and cessation of the wet season rainfall in the upper Baro-Akobo Basin, Ethiopia. Theor Appl Climatol 129:849–858. https://doi.org/10.1007/s00704-016-1813-y Kendall MG (1948) Rank correlation methods. Hafner Publishing Co., Oxford, England Khadr M (2017) Recent trends and fluctuations of rainfall in the upper Blue Nile river basin. In: Negm AM (ed) The Nile River. The handbook of environmental chemistry. Springer International Publishing, Cham, pp 451–466. https://doi.org/10.1007/698_2017_1 Khan N, Shahid S, Tb I, Wang X-J (2018) Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2520-7 Kizza M, Rodhe A, Xu C-Y, Ntale HK, Halldin S (2009) Temporal rainfall variability in the Lake Victoria Basin in East Africa during the twentieth century. Theor Appl Climatol 98:119–135. https://doi.org/10.1007/s00704-008-0093-6 Koutsoyiannis D (2003) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48:3–24. https://doi.org/10.1623/hysj.48.1.3.43481 Kumar S, Merwade V, Kam J, Thurner K (2009) Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. J Hydrol 374:171–183. https://doi.org/10.1016/j.jhydrol.2009.06.012 Ludescher J, Bunde A, Franzke CLE, Schellnhuber HJ (2016) Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica. Clim Dyn 46:263–271. https://doi.org/10.1007/s00382-015-2582-5 Magunda M (2010) Study on disaster risk management and environment for the Karamoja subregion. FAO, Rome Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. https://doi.org/10.2307/1907187 Markonis Y, Koutsoyiannis D (2013) Climatic variability over time scales spanning nine orders of magnitude: connecting Milankovitch cycles with Hurst–Kolmogorov dynamics. Surv Geophys 34:181–207. https://doi.org/10.1007/s10712-012-9208-9 Markonis Y, Batelis SC, Dimakos Y, Moschou E, Koutsoyiannis D (2017) Temporal and spatial variability of rainfall over Greece. Theor Appl Climatol 130:217–232. https://doi.org/10.1007/s00704-016-1878-7 McHugh MJ, Rogers JC (2001) North Atlantic oscillation influence on precipitation variability around the southeast African convergence zone. J Clim 14:3631–3642 Mengistu D, Bewket W, Lal R (2014) Recent spatiotemporal temperature and rainfall variability and trends over the upper Blue Nile river basin, Ethiopia. Int J Climatol 34:2278–2292. https://doi.org/10.1002/joc.3837 Mohamed Y, Savenije HHG (2014) Impact of climate variability on the hydrology of the Sudd wetland: signals derived from long term (1900-2000) water balance computations. Wetl Ecol Manag 22:191–198. https://doi.org/10.1007/s11273-014-9337-7 Mugume I, Mesquita M, Basalirwa C, Bamutaze Y, Reuder J, Nimusiima A, Waiswa D, Mujuni G, Tao S, Jacob Ngailo T (2016) Patterns of dekadal rainfall variation over a selected region in Lake Victoria basin, Uganda. Atmosphere 7:150 Muhire I, Ahmed F (2015) Spatio-temporal trend analysis of precipitation data over Rwanda. S Afr Geogr J 97:50–68. https://doi.org/10.1080/03736245.2014.924869 Muhire I, Ahmed F (2016) Spatiotemporal trends in mean temperatures and aridity index over Rwanda. Theor Appl Climatol 123:399–414. https://doi.org/10.1007/s00704-014-1353-2 Nashwan MS, Ismail T, Ahmed K (2018a) Flood susceptibility assessment in Kelantan river basin using copula. Int J Eng Technol 7. https://doi.org/10.14419/ijet.v7i2.10447 Nashwan MS, Shahid S, Abd Rahim N (2018b) Unidirectional trends in annual and seasonal climate and extremes in Egypt. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2498-1 Nashwan MS, Shahid S, Chung E-S, Ahmed K, Song YH (2018c) Development of climate-based index for hydrologic hazard susceptibility. Sustainability 10:2182. https://doi.org/10.3390/su10072182 NBI (2012a) Climate change and its implications for the Nile region. In: State of the River Nile Basin. Nile Basin Initiative Uganda, pp 205–224. ISSN:978-9970-444-00-7 NBI (2012b) The water resources of the Nile basin. In: State of the River Nile Basin. Nile Basin Initiative Uganda, pp 25–56. ISSN:978-9970-444-00-7 Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In: Barros VR et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press, Cambridge, pp 1199–1265 Nicholson SE, Kim J (1997) The relationship of the El Niño–Southern Oscillation to african rainfall. Int J Climatol 17:117–135. https://doi.org/10.1002/(SICI)1097-0088(199702)17:2<117::AID-JOC84>3.0.CO;2-O Nsubuga FNW, Olwoch JM, Rautenbach CJD, Botai OJ (2013) Analysis of mid-twentieth century rainfall trends and variability over southwestern Uganda. Theor Appl Climatol 115:53–71. https://doi.org/10.1007/s00704-013-0864-6 Ntale HK, Gan TY (2004) East African rainfall anomaly patterns in association with El Nino/Southern Oscillation. J Hydrol Eng 9:257–268. https://doi.org/10.1061/(Asce)1084-0699(2004)9:4(257) Ntegeka V, Willems P (2008) Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium. Water Resour Res 44. https://doi.org/10.1029/2007WR006471 Nyeko-Ogiramoi P, Willems P, Ngirane-Katashaya G (2013) Trend and variability in observed hydrometeorological extremes in the Lake Victoria basin. J Hydrol 489:56–73. https://doi.org/10.1016/j.jhydrol.2013.02.039 OCHA (2016) Burundi: Inter-Agency Monitoring Report, 29 January 2016. United Nations Office for the Coordination of Humanitarian Affairs (OCHA). https://reliefweb.int/sites/reliefweb.int/files/resources/Burundi%20Inter-Agency%20Monitoring%20Report_29%20January%202016_FINAL_V2.pdf. Accessed 26 Apr 2018 OCHA (2017) Sudan: humanitarian bulletin. United Nations Office for the Coordination of Humanitarian Affairs (OCHA). https://www.unocha.org/sites/dms/Sudan/Reports/OCHA_Sudan_Weekly_Humanitarian_Bulletin_2017/OCHA_Sudan_Humanitarian_Bulletin_Issue_15_(19%20June_-_2_July_2017).pdf. Accessed 26 Apr 2018 Ongoma V, Chen H, Gao C, Sagero PO (2018) Variability of temperature properties over Kenya based on observed and reanalyzed datasets. Theor Appl Climatol 133:1175–1190. https://doi.org/10.1007/s00704-017-2246-y Onyutha C (2016a) Geospatial trends and decadal anomalies in extreme rainfall over Uganda, East Africa. Adv Meteorol 2016:1–15. https://doi.org/10.1155/2016/6935912 Onyutha C (2016b) Variability of seasonal and annual rainfall in the River Nile riparian countries and possible linkages to ocean-atmosphere interactions. Hydrol Res 47:171–184. https://doi.org/10.2166/nh.2015.164 Onyutha C, Willems P (2017) Influence of spatial and temporal scales on statistical analyses of rainfall variability in the River Nile basin. Dyn Atmos Oceans 77:26–42. https://doi.org/10.1016/j.dynatmoce.2016.10.008 Onyutha C, Tabari H, Taye MT, Nyandwaro GN, Willems P (2016) Analyses of rainfall trends in the Nile river basin. J Hydro Environ Res 13:36–51. https://doi.org/10.1016/j.jher.2015.09.002 Rientjes THM, Haile AT, Kebede E, Mannaerts CMM, Habib E, Steenhuis TS (2011) Changes in land cover, rainfall and stream flow in upper Gilgel Abbay catchment, Blue Nile basin-Ethiopia. Hydrol Earth Syst Sci 15:1979–1989. https://doi.org/10.5194/hess-15-1979-2011 Sa’adi Z, Shahid S, Ismail T, Chung E-S, Wang X-J (2017a) Distributional changes in rainfall and river flow in Sarawak, Malaysia Asia-Pacific. J Atmos Sci 53:489–500. https://doi.org/10.1007/s13143-017-0051-2 Sa’adi Z, Shahid S, Ismail T, Chung E-S, Wang X-J (2017b) Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorolog Atmos Phys. https://doi.org/10.1007/s00703-017-0564-3 Sagarika S, Kalra A, Ahmad S (2014) Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. J Hydrol 517:36–53. https://doi.org/10.1016/j.jhydrol.2014.05.002 Salman SA, Shahid S, Ismail T, Chung E-S, Al-Abadi AM (2017) Long-term trends in daily temperature extremes in Iraq. Atmos Res 198:97–107. https://doi.org/10.1016/j.atmosres.2017.08.011 Seleshi Y, Camberlin P (2006) Recent changes in dry spell and extreme rainfall events in Ethiopia. Theor Appl Climatol 83:181–191. https://doi.org/10.1007/s00704-005-0134-3 Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.1080/01621459.1968.10480934 Shahid S, Wang XJ, Harun S (2014) Unidirectional trends in rainfall and temperature of Bangladesh. In: Hydrology in a Changing World: Environmental and Human Dimensions, Montpellier, France, October 2014. IAHS Press, pp 177–182 Shahid S, Hadi PS, Xiaojun W, Ahmed SS, Anil M, Bin IT (2017) Impacts and adaptation to climate change in Malaysian real estate. Int J Clim Change Strategies Manage 9:87–103. https://doi.org/10.1108/IJCCSM-01-2016-0001 Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19:3088–3111. https://doi.org/10.1175/jcli3790.1 Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438. https://doi.org/10.1038/nature11575 Shiru M, Shahid S, Alias N, Chung E-S (2018) Trend analysis of droughts during crop growing seasons of Nigeria. Sustainability 10:871. https://doi.org/10.3390/su10030871 Siam MS, Eltahir EA (2017) Climate change enhances interannual variability of the Nile river flow. Nat Clim Chang 7:350–354. https://doi.org/10.1038/Nclimate3273 Sneyers R (1990) On the statistical analysis of series of observations, 143 pp. World Meteorol Organ, Geneva Strzepek KM, Yates DN (2000) Responses and thresholds of the Egyptian economy to climate change impacts on the water resources of the Nile River. Clim Chang 46:339–356. https://doi.org/10.1023/a:1005603411569 Sutcliffe J, Dugdale G, Milford J (1989) The Sudan floods of 1988. Hydrol Sci J 34:355–364 Tabari H, Taye MT, Willems P (2015) Statistical assessment of precipitation trends in the upper Blue Nile river basin. Stoch Env Res Risk A 29:1751–1761. https://doi.org/10.1007/s00477-015-1046-0 Tariku TB, Gan TY (2018) Regional climate change impact on extreme precipitation and temperature of the Nile river basin. Clim Dyn. https://doi.org/10.1007/s00382-018-4092-8 Taye MT, Willems P (2012) Temporal variability of hydroclimatic extremes in the Blue Nile basin. Water Resour Res 48. https://doi.org/10.1029/2011wr011466 Tekleab S, Mohamed Y, Uhlenbrook S (2013) Hydro-climatic trends in the Abay/upper Blue Nile basin, Ethiopia. Phys Chem Earth 61-62:32–42. https://doi.org/10.1016/j.pce.2013.04.017 Tesemma ZK, Mohamed YA, Steenhuis TS (2010) Trends in rainfall and runoff in the Blue Nile basin: 1964-2003. Hydrol Process 24:3747–3758. https://doi.org/10.1002/hyp.7893 Tyralis H (2016) HKprocess: Hurst-Kolmogorov process. R package version 0.0–2 Williams M, Nottage J (2006) Impact of extreme rainfall in the central Sudan during 1999 as a partial analogue for reconstructing early Holocene prehistoric environments. Quat Int 150:82–94. https://doi.org/10.1016/j.quaint.2006.01.009 WMO (2016) Provisional WMO statement on the status of the global climate in 2016, vol 1189. World Meteorological Organization, Geneva, Switzerland Worku G, Teferi E, Bantider A, Dile YT (2018) Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, upper Blue Nile Basin, Ethiopia. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2412-x Xu CY, Zhang QA, El Tahir MEH, Zhang ZX (2010) Statistical properties of the temperature, relative humidity, and net solar radiation in the Blue Nile-eastern Sudan region. Theor Appl Climatol 101:397–409. https://doi.org/10.1007/s00704-009-0225-7 Yatagai A, Arakawa O, Kamiguchi K, Kawamoto H, Nodzu MI, Hamada A (2009) A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Sola 5:137–140. https://doi.org/10.2151/sola.2009-035 Yue S, Wang C (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18:201–218. https://doi.org/10.1023/B:Warm.0000043140.61082.60 Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829. https://doi.org/10.1002/hyp.1095 Yue S, Pilon P, Phinney BOB (2003) Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol Sci J 48:51–63. https://doi.org/10.1623/hysj.48.1.51.43478 Zhang Z, Xu C-Y, El-Tahir ME-H, Cao J, Singh V (2012) Spatial and temporal variation of precipitation in Sudan and their possible causes during 1948–2005. Stoch Env Res Risk A 26:429–441 Zhu Y, Lin Z, Zhao Y, Li H, He F, Zhai J, Wang L, Wang Q (2017) Flood simulations and uncertainty analysis for the Pearl river basin using the coupled land surface and hydrological model system. Water 9:391. https://doi.org/10.3390/w9060391