Spatial control of upconversion emission in a single fluoride microcrystalviathe excitation mode and native interference effect

Journal of Materials Chemistry C - Tập 6 Số 3 - Trang 622-629
Dangli Gao1,2,3,4,5, Dan Wang1,2,5,6, Xiangyu Zhang7,1,8,5, Xiaojuan Feng1,2,5,6, H.X. Xin1,2,5,6, Sining Yun1,9,5,6, Dongping Tian1,2,5,6
1China
2College of Science, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
3Shaanxi Key Laboratory of Nano Materials and Technology
4Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an, Shaanxi 710055, China
5Xi'an
6Xi’an University of Architecture and Technology
7Chang’an University
8College of Science, Chang’an University, Xi’an, ShaanXi 710064, China
9College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China

Tóm tắt

The fascinating luminescent patterns that exhibit different spatial distributions are obtained by varying the excitation modes.

Từ khóa


Tài liệu tham khảo

Park, 2015, Chem. Soc. Rev., 44, 1302, 10.1039/C4CS00173G

Zheng, 2015, Chem. Soc. Rev., 44, 1379, 10.1039/C4CS00178H

Suo, 2016, ACS Appl. Mater. Interfaces, 8, 30312, 10.1021/acsami.6b12176

Liu, 2016, Light: Sci. Appl., 5, e16136, 10.1038/lsa.2016.136

Deng, 2015, Nat. Nanotechnol., 10, 237, 10.1038/nnano.2014.317

Wang, 2014, Angew. Chem., 126, 1642, 10.1002/ange.201308843

Zhang, 2014, J. Am. Chem. Soc., 136, 4893, 10.1021/ja5013646

Zhang, 2016, Angew. Chem., Int. Ed., 55, 5718, 10.1002/anie.201511626

Chen, 2017, Angew. Chem., 129, 10519, 10.1002/ange.201703600

Shao, 2015, ACS Appl. Mater. Interfaces, 7, 25211, 10.1021/acsami.5b06817

Wang, 2015, J. Mater. Chem. C, 5, 8535, 10.1039/C7TC02374J

Chen, 2015, J. Phys. Chem. Lett., 6, 2833, 10.1021/acs.jpclett.5b01180

Chen, 2017, J. Mater. Chem. C, 5, 5434, 10.1039/C7TC01373F

Chen, 2016, Sens. Actuators, B, 231, 576, 10.1016/j.snb.2016.03.070

Boyer, 2010, Nanoscale, 2, 1417, 10.1039/c0nr00253d

Wang, 2011, Nat. Mater., 10, 968, 10.1038/nmat3149

Zhang, 2012, Nano Lett., 12, 2852, 10.1021/nl300421n

Bang, 2017, Nano Lett., 17, 6583, 10.1021/acs.nanolett.7b02327

He, 2017, Light: Sci. Appl., 6, e16217, 10.1038/lsa.2016.217

Liu, 2016, Nat. Commun., 7, 10254, 10.1038/ncomms10254

Gao, 2017, Phys. Chem. Chem. Phys., 19, 4288, 10.1039/C6CP06402G

Zhou, 2016, Adv. Opt. Mater., 4, 1174, 10.1002/adom.201600086

Gao, 2016, Sci. Rep., 6, 22433, 10.1038/srep22433

Auzel, 2004, Chem. Rev., 104, 139, 10.1021/cr020357g

Tu, 2015, Chem. Soc. Rev., 44, 1331, 10.1039/C4CS00168K

Zhou, 2015, J. Mater. Chem. C, 3, 364, 10.1039/C4TC02363C

Guo, 2013, Acc. Chem. Res., 47, 656, 10.1021/ar400232h

Law, 2004, Science, 305, 1269, 10.1126/science.1100999

Zhang, 2007, Angew. Chem., Int. Ed., 46, 7976, 10.1002/anie.200702519

Xu, 2017, Nanoscale, 9, 9238, 10.1039/C7NR01745F

Pisarski, 2016, Sens. Actuators, A, 252, 54, 10.1016/j.sna.2016.11.010

Gao, 2013, ACS Appl. Mater. Interfaces, 5, 9732, 10.1021/am402843h

Gao, 2013, RSC Adv., 3, 14757, 10.1039/c3ra40517f

Gao, 2015, J. Phys. Chem. C, 119, 2349, 10.1021/jp511566h

Chen, 2016, J. Phys. Chem. Lett., 7, 4916, 10.1021/acs.jpclett.6b02210

Gu, 2010, ACS Nano, 4, 5332, 10.1021/nn100775v

Gu, 2008, Nano Lett., 8, 2757, 10.1021/nl8012314

Gu, 2009, Opt. Express, 17, 11230, 10.1364/OE.17.011230

Huang, 2007, Appl. Opt., 46, 1429, 10.1364/AO.46.001429

Davanco, 2009, Opt. Express, 17, 10542, 10.1364/OE.17.010542

Zhao, 2013, Nat. Nanotechnol., 8, 729, 10.1038/nnano.2013.171

Pollnau, 2000, Phys. Rev. B: Condens. Matter Mater. Phys., 61, 3337, 10.1103/PhysRevB.61.3337

Chen, 2015, Adv. Opt. Mater., 3, 1577, 10.1002/adom.201500246

Han, 2017, Sci. Rep., 7, 5371, 10.1038/s41598-017-04519-6

E. Hecht , Optics , Pearson Education Limited , Edinburgh Gate, Harlow, England , 5th edn, 2017

Zhu, 2015, Nat. Mater., 14, 636, 10.1038/nmat4271

Ma, 2016, J. Phys. Chem. Lett., 7, 3252, 10.1021/acs.jpclett.6b01434

Wang, 2017, ACS Photonics, 4, 1539, 10.1021/acsphotonics.7b00301