Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake

Science advances - Tập 3 Số 11 - 2017
Hiro Nimiya1, Tatsunori Ikeda2, Takeshi Tsuji1,2
1Department of Earth Resources Engineering, Kyushu University, Fukuoka, Japan
2International Institute for Carbon-Neutral Energy Research, Kyushu University, Fukuoka, Japan

Tóm tắt

We mapped temporal seismic velocity variations during the Kumamoto earthquake due to fault rupture and a volcanic eruption.

Từ khóa


Tài liệu tham khảo

10.1126/science.1160943

10.1126/science.1254073

S. Minato, T. Tsuji, S. Ohmi, T. Matsuoka, Monitoring seismic velocity change caused by the 2011 Tohoku-oki earthquake using ambient noise records. Geophys. Res. Lett. 39, L09309 (2012).

10.1038/nature01354

10.1038/nature07111

10.1126/sciadv.1501289

10.1029/2011GL048800

U. Wegler, C. Sens-Schönfelder, Fault zone monitoring with passive image interferometry. Geophys. J. Int. 168, 1029–1033 (2007).

M. N. Toksöz, C. H. Cheng, A. Timur, Velocities of seismic waves in porous rocks. Geophysics 41, 621–645 (1976).

T. Tsuji, H. Tokuyama, P. C. Pisani, G. Moore, Effective stress and pore pressure in the Nankai accretionary prism off the Muroto Peninsula, southwestern Japan. J. Geophys. Res. 113, B11401 (2008).

10.1038/ngeo104

10.1016/j.jvolgeores.2016.04.036

A. Budi-Santoso, P. Lesage, Velocity variations associated with the large 2010 eruption of Merapi volcano, Java, retrieved from seismic multiplets and ambient noise cross-correlation. Geophys. J. Int. 206, 221–240 (2016).

G. Poupinet, W. L. Ellsworth, J. Frechet, Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. J. Geophys. Res. 89, 5719–5731 (1984).

A. J. Hotovec-Ellis, J. Gomberg, J. E. Vidale, K. C. Creager, A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry. J. Geophys. Res. 119, 2199–2214 (2014).

T. Nishimura, N. Uchida, H. Sato, M. Ohtake, S. Tanaka, H. Hamaguchi, Temporal changes of the crustal structure associated with the M6.1 earthquake on September 3, 1998, and the volcanic activity of Mount Iwate, Japan. Geophys. Res. Lett. 27, 269–272 (2000).

A. Obermann, T. Planès, E. Larose, M. Campillo, Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. J. Geophys. Res. 118, 6285–6294 (2013).

A. Obermann, B. Froment, M. Campillo, E. Larose, T. Planès, B. Valette, J. H. Chen, Q. Y. Liu, Seismic noise correlations to image structural and mechanical changes associated with the M w 7.9 2008 Wenchuan earthquake. J. Geophys. Res. 119, 3155–3168 (2014).

10.1186/BF03353076

K. Asano, T. Iwata, Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data. Earth Planets Space 68, 147 (2016).

A. Kato, J. Fukuda, S. Nakagawa, K. Obara, Foreshock migration preceding the 2016 Mw 7.0 Kumamoto earthquake, Japan. Geophys. Res. Lett. 43, 8945–8953 (2016).

Y. Yagi, R. Okuwaki, B. Enescu, A. Kasahara, A. Miyakawa, M. Otsubo, Rupture process of the 2016 Kumamoto earthquake in relation to the thermal structure around Aso volcano. Earth Planets Space 68, 118 (2016).

Geospatial Information Authority of Japan Coseismic Fault Model in the 2016 Kumamoto Earthquake (Geospatial Information Authority of Japan 2016); www.gsi.go.jp/common/000140781.pdf.

S. Matsumoto, S. Nakao, T. Ohkura, M. Miyazaki, H. Shimizu, Y. Abe, H. Inoue, M. Nakamoto, S. Yoshikawa, Y. Yamashita, Spatial heterogeneities in tectonic stress in Kyushu, Japan and their relation to a major shear zone. Earth Planets Space 67, 172 (2015).

T. Ozawa, E. Fujita, H. Ueda, Crustal deformation associated with the 2016 Kumamoto Earthquake and its effect on the magma system of Aso volcano. Earth Planets Space 68, 186 (2016).

A. Miyakawa, T. Sumita, Y. Okubo, R. Okuwaki, M. Otsubo, S. Uesawa, Y. Yagi, Volcanic magma reservoir imaged as a low-density body beneath Aso volcano that terminated the 2016 Kumamoto earthquake rupture. Earth Planets Space 68, 208 (2016).

A. Derode, E. Larose, M. Campillo, M. Fink, How to estimate the Green’s function of a heterogeneous medium between two passive sensors? Application to acoustic waves. Appl. Phys. Lett. 83, 3054–3056 (2003).

K. Wapenaar, J. Fokkema, Green’s function representations for seismic interferometry. Geophysics 71, SI33–SI46 (2006).

U. Meier, N. M. Shapiro, F. Brenguier, Detecting seasonal variations in seismic velocities within Los Angeles Basin from correlations of ambient seismic noise. Geophys. J. Int. 181, 985–996 (2010).

10.1111/j.1365-246X.2011.05074.x

10.1029/2006GL027797

A. Obermann, T. Kraft, E. Larose, S. Wiemer, Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland). J. Geophys. Res. 120, 4301–4316 (2015).

J. Xia, R. D. Miller, C. B. Park, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 64, 691–700 (1999).

T. Tsuji, G. Kimura, S. Okamoto, F. Kono, H. Mochinaga, T. Saeki, H. Tokuyama, Modern and ancient seismogenic out-of-sequence thrusts in the Nankai accretionary prism: Comparison of laboratory-derived physical properties and seismic reflection data. Geophys. Res. Lett. 33, L18309 (2006).

10.1126/science.aal3422

Y.-G. Li, P. Chen, E. S. Cochran, J. E. Vidale, T. Burdette, Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M 6.0 Parkfield earthquake. Bull. Seismol. Soc. Am. 96, S349–S363 (2006).

C. Wu, A. Delorey, F. Brenguier, C. Hadziioannou, E. G. Daub, P. Johnson, Constraining depth range of S wave velocity decrease after large earthquakes near Parkfield, California. Geophys. Res. Lett. 43, 6129–6136 (2016).

T. R. Walter, How a tectonic earthquake may wake up volcanoes: Stress transfer during the 1996 earthquake–eruption sequence at the Karymsky Volcanic Group, Kamchatka. Earth Planet. Sci. Lett. 264, 347–359 (2007).

G. D. Bensen, M. H. Ritzwoller, N. M. Shapiro, Broadband ambient noise surface wave tomography across the United States. J. Geophys. Res. 113, B05306 (2008).

K. J. Seats, J. F. Lawrence, G. A. Prieto, Improved ambient noise correlation functions using Welch’s method. Geophys. J. Int. 118, 513–523 (2012).

10.1111/j.1365-246X.2007.03374.x

N. Nakata, R. Snieder, T. Tsuji, K. Larner, T. Matsuoka, Shear wave imaging from traffic noise using seismic interferometry by cross-coherence. Geophysics 76, SA97–SA106 (2011).

N. Nakata, J. P. Chang, J. F. Lawrence, P. Boué, Body wave extraction and tomography at Long Beach, California, with ambient-noise interferometry. J. Geophys. Res. 120, 1159–1173 (2015).

10.1121/1.3125345

K. Sassa, Volcanic micro-tremors and eruption-earthquakes. Mem. Coll. Sci. Kyoto Univ. Ser. A 18, 255–293 (1935).

H. Kawakatsu, S. Kaneshima, H. Matsubayashi, T. Ohminato, Y. Sudo, T. Tsutsui, K. Uhira, H. Yamasato, H. Ito, D. Legrand, Aso94: Aso seismic observation with broadband instruments. J. Volcanol. Geotherm. Res. 101, 129–154 (2000).

A. Colombi, J. Chaput, F. Brenguier, G. Hillers, P. Roux, M. Campillo, On the temporal stability of the coda of ambient noise correlations. C. R. Geosci. 346, 307–316 (2014).

Z. Zhan, V. C. Tsai, R. W. Clayton, Spurious velocity changes caused by temporal variations in ambient noise frequency content. Geophys. J. Int. 194, 1574–1581 (2013).

C. Hadziioannou, E. Larose, A. Baig, P. Roux, M. Campillo, Improving temporal resolution in ambient noise monitoring of seismic wave speed. J. Geophys. Res. 116, B07304 (2011).

H. Takeuchi, M. Saito, Seismic surface waves. Methods Comput. Phys. 11, 217–295 (1972).

M. Saito DISPER 80: A subroutine package for the calculation of seismic normal mode solution in Seismological Algorithms D. J. Doornbos Ed. (Academic Press Limited 1988).

K. Nishida, H. Kawakatsu, K. Obara, Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters. J. Geophys. Res. 113, B10302 (2008).

P. Wessel, W. H. F. Smith, New, improved version of generic mapping tools released. Eos Trans. Am. Geophys. Union 79, 579 (1998).