Các quy mô không gian và thời gian của cấu trúc cảnh quan ảnh hưởng đến mối quan hệ giữa đa dạng sinh học và cảnh quan ở các nhóm loài sinh học khác biệt về sinh thái

Springer Science and Business Media LLC - Tập 37 - Trang 2311-2325 - 2022
Yiwen Pan1,2, Anna M. Hersperger2, Felix Kienast2, Ziyan Liao2,3, Gang Ge1,4, Michael P. Nobis2
1Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, China
2Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
3CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
4School of Life Sciences, Nanchang University, Nanchang, China

Tóm tắt

Các tác động của cấu trúc cảnh quan lên đa dạng sinh học có thể thay đổi theo quy mô không gian và thời gian mà cấu trúc cảnh quan được đo lường. Việc xác định phạm vi không gian và quy mô thời gian mà mối quan hệ giữa đa dạng sinh học và cảnh quan mạnh nhất (tức là quy mô tác động) là rất quan trọng để hiểu rõ hơn về tác động của cấu trúc cảnh quan. Quy mô không gian và thời gian của tác động được phân tích để xác định xem nó có khác nhau ở các nhóm loài sinh học khác biệt về sinh thái hay không. Chúng tôi đã khảo sát cách mối quan hệ giữa độ phong phú về loài và cấu trúc cảnh quan thay đổi với các quy mô không gian và thời gian. Dựa trên 98 ô khảo sát (1 km2) các loài thực vật có mạch trên Cao nguyên Thụy Sĩ, chúng tôi đã phân tích các mối quan hệ giữa độ phong phú của các nhóm loài khác nhau và các yếu tố dự đoán cảnh quan ở các phạm vi không gian khác nhau (1 km2, 4 km2, 16 km2, 36 km2) và các khoảng thời gian (cảnh quan trong quá khứ — 1985, 1997, 2009 và cảnh quan hiện tại 2018). Quy mô không gian của tác động là 1 km đối với hầu hết các nhóm loài, trong khi quy mô thời gian của tác động khác nhau giữa các nhóm loài. Độ mạnh của mối quan hệ giữa độ phong phú loài và cảnh quan thường giảm khi các phạm vi không gian tăng lên, trong khi nó thay đổi không nhiều giữa các quy mô thời gian. Mặc dù nghiên cứu của chúng tôi chỉ xem xét sự thay đổi trong cấu trúc cảnh quan trong khoảng 30 năm qua, các nhóm loài khác biệt về sinh thái đã cho thấy sự khác biệt trong quy mô thời gian của tác động bao gồm phản ứng nhanh chóng của các loài ngoại lai liên quan đến những cuộc xâm lược sinh học đang diễn ra. Tuy nhiên, mức độ biến đổi trong mối quan hệ giữa độ phong phú loài và cảnh quan cao hơn khi thay đổi phạm vi không gian hơn là thời gian. Chúng tôi nhấn mạnh rằng việc nghiên cứu mối quan hệ giữa cấu trúc cảnh quan và đa dạng sinh học không chỉ nên xem xét không gian mà còn cả thời gian, cùng với những phản ứng khác nhau của các nhóm loài khác biệt về sinh thái.

Từ khóa

#cấu trúc cảnh quan #đa dạng sinh học #quy mô không gian #quy mô thời gian #loài ngoại lai

Tài liệu tham khảo

Aarssen LW (2000) Why are most selfers annuals? A new hypothesis for the fitness benefit of selfing. Oikos 89:606–612 Adriaens D, Honnay O, Hermy M (2006) No evidence of a plant extinction debt in highly fragmented calcareous grasslands in Belgium. Biol Conserv 133:212–224 Aggemyr E, Cousins SAO (2012) Landscape structure and land use history influence changes in island plant composition after 100 years. J Biogeogr 39:1645–1656 Auffret AG, Kimberley A, Plue J, Waldén E (2018) Super-regional land-use change and effects on the grassland specialist flora. Nat Commun. https://doi.org/10.1038/s41467-018-05991-y Avon C, Bergès L, Dupouey J-L (2015) Landscape effects on plants in forests: large-scale context determines local plant response. Landsc Urban Plan 144:65–73 BDM Coordination Office (2014) Swiss Biodiversity Monitoring BDM. Description of Methods and Indicators. Federal Office for the Environment, Bern. Environmental Studies No. 1410 BFS GEOSTAT 1979/85 Arealstatistik 1979/1985. Neuchatel. https://www.bfs.admin.ch BFS GEOSTAT 1992/97 Arealstatistik 1992/1997. Neuchatel. https://www.bfs.admin.ch BFS GEOSTAT 2004/09 Arealstatistik 2004/2009. Neuchatel. https://www.bfs.admin.ch BFS GEOSTAT 2013/18 Arealstatistik 2013/2018. Neuchatel. https://www.bfs.admin.ch Bonser SP (2013) High reproductive efficiency as an adaptive strategy in competitive environments. Funct Ecol 27:876–885 Bonte D, Vandenbroecke N, Lens L, Maelfait J-P (2003) Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc R Soc London Ser B 270:1601–1607 Boscolo D, Metzger JP (2009) Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales? Landsc Ecol 24:907–918 Brudvig LA (2011) The restoration of biodiversity: where has research been and where does it need to go? Am J Bot 98:549–558 Brunzel S, Fischer SF, Schneider J et al (2009) Neo-and archaeophytes respond more strongly than natives to socio-economic mobility and disturbance patterns along an urban–rural gradient. J Biogeogr 36:835–844 Čeplová N, Kalusová V, Lososová Z (2017) Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landsc Urban Plan 159:15–22 Chapin FS III, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242. Concepción ED, Moretti M, Altermatt F et al (2015) Impacts of urbanisation on biodiversity: the role of species mobility, degree of specialisation and spatial scale. Oikos 124:1571–1582 Concepción ED, Obrist MK, Moretti M et al (2016) Impacts of urban sprawl on species richness of plants, butterflies, gastropods and birds: not only built-up area matters. Urban Ecosyst 19:225–242 Cousins SAO (2009) Extinction debt in fragmented grasslands: paid or not? J Veg Sci 20:3–7 Cousins SAO, Vanhoenacker D (2011) Detection of extinction debt depends on scale and specialisation. Biol Conserv 144:782–787. Cousins SAO, Auffret AG, Lindgren J, Tränk L (2015) Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio 44:17–27 De Chazal J, Rounsevell MDA (2009) Land-use and climate change within assessments of biodiversity change: a review. Glob Environ Chang 19:306–315 Deutschewitz K, Lausch A, Kühn I, Klotz S (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob Ecol Biogeogr 12:299–311 Duan M, Liu Y, Li X et al (2019) Effect of present and past landscape structures on the species richness and composition of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) in a dynamic landscape. Landsc Urban Plan 192:103649 Duflot R, Ernoult A, Aviron S, et al (2017) Relative effects of landscape composition and configuration on multi-habitat gamma diversity in agricultural landscapes. Agric Ecosyst Environ 241:62–69. Duncan RP (2021) Time lags and the invasion debt in plant naturalisations. Ecol Lett Essl F, Dullinger S, Rabitsch W et al (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci 108:203–207 Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515 Figueiredo L, Krauss J, Steffan-Dewenter I, Sarmento Cabral J (2019) Understanding extinction debts: spatio–temporal scales, mechanisms and a roadmap for future research. Ecography (cop) 42:1973–1990 FOEN (2017) Biodiversity in Switzerland: Status and Trends. Federal Office for the Environment, Bern. State of the Environment No. 1630 Fourcade Y, WallisDeVries MF, Kuussaari M, et al (2021) Habitat amount and distribution modify community dynamics under climate change. Ecol Lett Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23 Galán-Acedo C, Arroyo-Rodríguez V, Estrada A, Ramos-Fernández G (2018) Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography (cop) 41:2027–2037. Gillson L (2009) Landscapes in time and space. Landsc Ecol 24:149–155 Gliessman SR (2014) Agroecology: the ecology of sustainable food systems. CRC Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: Capercaillie in the Swiss Alps. Landsc Ecol 20:703–717. Haddad NM, Brudvig LA, Clobert J et al (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052 Hadley AS, Frey SJK, Robinson WD et al (2014) Tropical forest fragmentation limits pollination of a keystone understory herb. Ecology 95:2202–2212 Haines-Young R (2009) Land use and biodiversity relationships. Land use policy 26:S178–S186. Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77. Hendershot JN, Smith JR, Anderson CB et al (2020) Intensive farming drives long-term shifts in avian community composition. Nature 579:393–396 Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. Bioscience 54:227–233. Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landsc Ecol 27:929–941 Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24:52–63. Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160 Jaeger JAG (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landsc Ecol 15:115–130 Jaeger JAG, Bertiller R, Schwick C et al (2008) Implementing landscape fragmentation as an indicator in the Swiss Monitoring System of Sustainable Development (MONET). J Environ Manage 88:737–751 Kallio S (2014) Relationship between species traits and landscape extent in ground beetles. Carabidae, Coleoptera Karger DN, Conrad O, Böhner J et al (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:170122. Kolk J, Naaf T (2015) Herb layer extinction debt in highly fragmented temperate forests–completely paid after 160 years? Biol Conserv 182:164–172 Kolk J, Naaf T, Wulf M (2017) Paying the colonization credit: converging plant species richness in ancient and post-agricultural forests in NE Germany over five decades. Biodivers Conserv 26:735–755 Krauss J, Bommarco R, Guardiola M et al (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605 Kuussaari M, Bommarco R, Heikkinen RK et al (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571 Lachat T, Burgisser L, Clerc P et al (2010) Wandel der Biodiversität in der Schweiz seit 1900: ist die Talsohle erreicht? Haupt Lami F, Bartomeus I, Nardi D, et al (2021) Species–habitat networks elucidate landscape effects on habitat specialisation of natural enemies and pollinators. Ecol Lett 24:288–297. Landolt E, Bäumler B, Erhardt A, et al (2010) Flora indicativa. Ecological Indicator Values and Biological Attributes of the Flora of Switzerland and the Alps. 376 p. Haupt, Bern. Le Provost G, Badenhausser I, Le Bagousse-Pinguet Y et al (2020) Land-use history impacts functional diversity across multiple trophic groups. Proc Natl Acad Sci 117:1573–1579 Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur Award Lecture Ecology 73:1943–1967 Lindborg R (2007) Evaluating the distribution of plant life-history traits in relation to current and historical landscape configurations. J Ecol 95:555–564 Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845 Lira PK, de Souza LM, Metzger JP (2019) Temporal lag in ecological responses to landscape change: where are we now? Curr Landsc Ecol Reports 4:70–82 Löffler F, Poniatowski D, Fartmann T (2020) Extinction debt across three taxa in well-connected calcareous grasslands. Biol Conserv 246:108588 Loran C, Ginzler C, Bürgi M (2016) Evaluating forest transition based on a multi-scale approach: forest area dynamics in Switzerland 1850–2000. Reg Environ Chang 16:1807–1818 Martin A (2015) The interacting effects of the historic landscape structure, human landscape change, and species mobility on species extinction risk in human-altered landscapes: an evolutionary perspective Martin AE, Fahrig L (2012) Measuring and selecting scales of effect for landscape predictors in species–habitat models. Ecol Appl 22:2277–2292 Martin EA, Dainese M, Clough Y et al (2019) The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol Lett 22:1083–1094 Miguet P, Jackson HB, Jackson ND et al (2016) What determines the spatial extent of landscape effects on species? Landsc Ecol 31:1177–1194. Miller JED, Damschen EI, Harrison SP, Grace JB (2015) Landscape structure affects specialists but not generalists in naturally fragmented grasslands. Ecology 96:3323–3331 Moraga AD, Martin AE, Fahrig L (2019) The scale of effect of landscape context varies with the species’ response variable measured. Landsc Ecol 34:703–715 Newman EA, Kennedy MC, Falk DA, McKenzie D (2019) Scaling and complexity in landscape ecology. Front Ecol Evol 7:293 Nobis MP, Jaeger JAG, Zimmermann NE (2009) Neophyte species richness at the landscape scale under urban sprawl and climate warming. Divers Distrib 15:928–939 Öster M, Cousins SAO, Eriksson O (2007) Size and heterogeneity rather than landscape context determine plant species richness in semi-natural grasslands. J Veg Sci 18:859–868 Pautasso M (2007) Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol Lett 10:16–24 Peters MK, Hemp A, Appelhans T et al (2019) Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568:88–92 Piano E, Souffreau C, Merckx T et al (2020) Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob Chang Biol 26:1196–1211 Plattner M, Birrer S, Weber D (2004) Data quality in monitoring plant species richness in Switzerland. Community Ecol 5:135–143 R Core, R Team (2020) A language and environment for statistical computing, R Foundation for Statistical Computing; 2013 Redon M, Berges L, Cordonnier T, Luque S (2014) Effects of increasing landscape heterogeneity on local plant species richness: how much is enough? Landsc Ecol 29:773–787 Reitalu T, Purschke O, Johansson LJ et al (2012) Responses of grassland species richness to local and landscape factors depend on spatial scale and habitat specialization. J Veg Sci 23:41–51 Richardson DM, Pyšek P, Rejmánek M et al (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107 Ridding LE, Newton AC, Keith SA et al (2021) Inconsistent detection of extinction debts using different methods. Ecography (cop) 44:33–43 Sala OE, Stuart Chapin F, III, et al (2000) Global biodiversity scenarios for the year 2100. Science (80-) 287:1770–1774. San-José M, Arroyo-Rodríguez V, Jordano P et al (2019) The scale of landscape effect on seed dispersal depends on both response variables and landscape predictor. Landsc Ecol 34:1069–1080 Schleicher A, Biedermann R, Kleyer M (2011) Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landsc Ecol 26:529–540 Schwick C, Jaeger J, Hersperger A, et al (2018) Zersiedelung messen und begrenzen: Massnahmen und Zielvorgaben für die Schweiz, ihre Kantone und Gemeinden. Haupt Verlag Semper-Pascual A, Burton C, Baumann M et al (2021) How do habitat amount and habitat fragmentation drive time-delayed responses of biodiversity to land-use change? Proc R Soc B 288:20202466 Smith AC, Fahrig L, Francis CM (2011) Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds. Ecography (cop) 34:103–113 Soga M, Koike S (2013) Mapping the potential extinction debt of butterflies in a modern city: implications for conservation priorities in urban landscapes. Anim Conserv 16:1–11 Suárez-Castro AF, Simmonds JS, Mitchell MGE et al (2018) The scale-dependent role of biological traits in landscape ecology: a review. Curr Landsc Ecol Reports 3:12–22 Swisstopo (2010) DHM25––The Digital Height Model of Switzerland. http://www.swisstopo.admin.ch Thornton DH, Fletcher RJ Jr (2014) Body size and spatial scales in avian response to landscapes: a meta-analysis. Ecography (cop) 37:454–463 Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197 Vellend M, Verheyen K, Jacquemyn H et al (2006) Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87:542–548 Weber D, Hintermann U, Zangger A (2004) Scale and trends in species richness: considerations for monitoring biological diversity for political purposes. Glob Ecol Biogeogr 13:97–104 Whigham DF, Simpson RL (1978) The relationship between aboveground and belowground biomass of freshwater tidal wetland macrophytes. Aquat Bot 5:355–364 Wohlgemuth T, Nobis MP, Kienast F, Plattner M (2008) Modelling vascular plant diversity at the landscape scale using systematic samples. J Biogeogr 35:1226–1240 Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landsc Ecol 17:355–365