Biến động không gian và theo mùa của vận chuyển diapycnal toàn cầu được suy diễn từ các hồ sơ Argo

Springer Science and Business Media LLC - Tập 37 - Trang 498-512 - 2018
Chao Huang1,2,3,4, Yongsheng Xu1,2,4
1Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
2Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
3University of Chinese Academy of Sciences, Beijing, China
4Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China

Tóm tắt

Vận chuyển diapycnal toàn cầu trong nội địa đại dương là một trong những nhánh quan trọng đưa nước sâu trở lại gần bề mặt. Tuy nhiên, khối lượng của vận chuyển diapycnal và những biến đổi theo mùa vẫn chưa được xác định. Bài báo này ước lượng tỷ lệ phân tán và các vận chuyển diapycnal liên quan ở độ sâu 500 m, 750 m và 1.000 m trên toàn bộ đại dương toàn cầu bằng cách sử dụng các hồ sơ Argo rộng rãi, thông qua các tham số hóa quy mô nhỏ và cân bằng khuếch tán - đối lưu cổ điển. Dòng nước lên là ~5,2±0,81 Sv (Sverdrup) tương đương khoảng một phần năm so với sự hình thành của nước sâu. Nam Đại Dương là khu vực chính có vận chuyển diapycnal đi lên, trong khi khu vực đi xuống chủ yếu xuất hiện ở phía bắc Đại Tây Dương. Dòng nước lên trong Nam Đại Dương chiếm hơn 50% tổng lượng của toàn cầu. Chu trình theo mùa rõ rệt ở độ sâu 500 m và biến mất khi xuống sâu hơn, cho thấy nguồn năng lượng từ bề mặt. Sự gia tăng vận chuyển diapycnal xảy ra ở độ sâu 1.000 m trong Nam Đại Dương, có liên quan đến sự sinh ra sóng nội do tương tác giữa các dòng chảy mạnh mẽ và địa hình gồ ghề. Các ước lượng của chúng tôi về vận chuyển diapycnal trong nội địa đại dương có ý nghĩa đối với việc hoàn thành ngân sách năng lượng đại dương và hiểu biết về dòng chảy đảo ngược theo meridian toàn cầu.

Từ khóa

#vận chuyển diapycnal #đại dương #hồ sơ Argo #dòng chảy đảo ngược #Nam Đại Dương #miền Bắc Đại Tây Dương

Tài liệu tham khảo

Caldeira K, Duffy P B. 2000. The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide. Science, 287 (5453): 620–622. De Boor C. 1962. Bicubic spline interpolation. Journal of Mathematics and Physics, 41 (1–4): 212–218. Dietrich D E, Mehra A, Haney R L, Bowman M J, Tseng Y H. 2004. Dissipation effects in North Atlantic Ocean modeling. Geophysical Research Letters, 31 (5): L05302. Donohue K A, Tracey K L, Watts D R, Chidichimo M P, Chereskin T K. 2016. Mean antarctic circumpolar current transport measured in Drake Passage. Geophysical Research Letters, 43 (22): 11 760–11 767. Frölicher T L, Sarmiento J L, Paynter D J, Dunne J P, Krasting J P, Winton M. 2015. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. Journal of Climate, 28 (2): 862–886. Furuichi N, Hibiya T, Niwa Y. 2008. Model–predicted distribution of wind–induced internal wave energy in the world's oceans. Journal of Geophysical Research: Oceans, 113 (C9): C09034. Gargett A E. 1990. Do we really know how to scale the turbulent kinetic energy dissipation rate ε due to breaking of oceanic internal waves? Journal of Geophysical Research: Oceans, 95 (C9): 15 971–15 974. Gregg M C, Kunze E. 1991. Shear and strain in Santa Monica basin. Journal of Geophysical Research: Oceans, 96 (C9): 16 709–16 719. Gregg M C, Sanford T B, Winkel D P. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422 (6931): 513–515. Gregg M C. 1987. Diapycnal mixing in the thermocline: a review. Journal of Geophysical Research: Oceans, 92 (C5): 5 249–5 286. Gregg M C. 1989. Scaling turbulent dissipation in the thermocline. Journal of Geophysical Research: Oceans, 94 (C7): 9 686–9 698. Haugan PM, Alendal G. 2005. Turbulent diffusion and transport from a CO 2 lake in the deep ocean. Journal of Geophysical Research: Oceans, 110 (C9): C09S14. Henyey F S. 1991. Scaling of internal wave predictions for ε. In: Dynamics of Internal Gravity Waves in the Ocean: Proceedings of ‘Aha Huliko’ a Hawaiian Winter Workshop. University of Hawaii at Manoa, Honolulu, HI. p.233–236. Huang C, Xu Y S. 2018. Update on the global energy dissipation rate of deep–ocean low–frequency flows by bottom boundary layer. Journal of Physical Oceanography, 48(6): 1 243–1 255, https://doi.org/10.1175/JPO–D–16–0287.1. Huber M, Tailleux R, Ferreira D, Kuhlbrodt T, Gregory J. 2015. A traceable physical calibration of the vertical advection–diffusion equation for modeling ocean heat uptake. Geophysical Research Letters, 42 (7): 2 333–2 341. Jayne S R. 2009. The impact of abyssal mixing parameterizations in an ocean general circulation model. Journal of Physical Oceanography, 39 (7): 1 756–1 775. Johnson G C. 2008. Quantifying Antarctic bottom water and North Atlantic deep water volumes. Journal of Geophysical Research: Oceans, 113 (C5): C05027. Khatiwala S, Tanhua T, MikaloffFletcher S, Gerber M, Doney S C, Graven H D, Gruber N, McKinley G A, Murata A, Ríos A F, Sabine C L. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences, 10 (4): 2 169–2 191. Klymak J M, Moum J N, Nash J D, Kunze E, Girton J B, Carter G S, Lee C M, Sanford T B, Gregg M C. 2006. An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. Journal of Physical Oceanography, 36 (6): 1 148–1 164. Kunze E, Firing E, Hummon J M, Chereskin T K, Thurnherr A M. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. Journal of Physical Oceanography, 36 (8): 1 553–1 576. Kunze E, Williams A J, Briscoe M G. 1990. Observations of shear and vertical stability from a neutrally buoyant float. Journal of Geophysical Research: Oceans, 95 (C10): 18 127–18 142. Kunze E. 2017. Internal–wave–driven mixing: global geography and budgets. Journal of Physical Oceanography, 47 (6): 1 325–1 345. LeBel D A, Smethie W M Jr, Rhein M, Kieke D, Fine R A, Bullister J L, Min D H, Roether W, Weiss R F, Andrié C, Smythe–Wright D, Jones E P. 2008. The formation rate of North Atlantic deep water and eighteen degree water calculated from CFC–11 inventories observed during WOCE. Deep Sea Research Part I: Oceanographic Research Papers, 55 (8): 891–910. Ledwell J R, St Laurent L C, Girton J B, Toole J M. 2011. Diapycnal mixing in the Antarctic circumpolar Current. Journal of Physical Oceanography, 41 (1): 241–246. Li Y, Xu Y S. 2014. Penetration depth of diapycnal mixing generated by wind stress and flow over topography in the northwestern Pacific. Journal of Geophysical Research: Oceans, 119 (8): 5 501–5 514. Luis A J, Pandey P C. 2004. Seasonal variability of QSCATderived wind stress over the Southern Ocean. Geophysical Research Letters, 31 (13): L13304. Lumpkin R, Speer K. 2007. Global ocean meridional overturning. Journal of Physical Oceanography, 37 (10): 2 550–2 562. Marshall J, Speer K. 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5 (3): 171–180. Morrison A K, Frölicher T L, Sarmiento J L. 2015. Upwelling in the southern ocean. Physics Today, 68 (1): 27–32. Munk W H. 1966. Abyssal recipes. Deep Sea Research and Oceanographic Abstracts, 13 (4): 707–730. Munk W H. 1981. Internal waves and small–scale processes. In: Warren B A, Wunsch C H. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel. The MIT Press, Kamp Bridge, MA. 623p. Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45 (12): 1 977–2 010. Naveira Garabato A C, Polzin K L, King B A, Heywood K J, Visbeck M. 2004. Widespread intense turbulent mixing in the Southern Ocean. Science, 303 (5655): 210–213. Nikurashin M, Ferrari R. 2011. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophysical Research Letters, 38 (8): L08610. Nikurashin M, Ferrari R. 2013. Overturning circulation driven by breaking internal waves in the deep ocean. Geophysical Research Letters, 40 (12): 3 133–3 137. Nikurashin M, Vallis G K, Adcroft A. 2013. Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nature Geoscience, 6 (1): 48–51. Orsi A H, Whitworth III T, Nowlin W D Jr. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Research Part I: Oceanographic Research Papers, 42 (5): 641–673. Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10 (1): 83–89. Ostrovskii A, Font J. 2003. Advection and dissipation rates in the upper ocean mixed layer heat anomaly budget over the North Atlantic in summer. Journal of Geophysical Research: Oceans, 108 (C12): 3376. Peltier W R, Caulfield C P. 2003. Mixing efficiency in stratified shear flows. Annual Review of Fluid Mechanics, 35: 135–167. Polzin K L, Toole J M, Ledwell J R, Schmitt R W. 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 (5309): 93–96. Polzin K L, Toole J M, Schmitt R W. 1995. Finescale parameterizations of turbulent dissipation. Journal of Physical Oceanography, 25 (3): 306–328. Risien C M, Chelton D B. 2008. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. Journal of Physical Oceanography, 38 (11): 2 379–2 413. Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W R, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios A F. 2004. The oceanic sink for anthropogenic CO 2. Science, 305 (5682): 367–371. Sallée J B, Morrow R, Speer K. 2008. Eddy heat diffusion and Subantarctic Mode Water formation. Geophysical Research Letters, 35 (5): L05607. Schmitz W J. 1995. On the interbasin–scale thermohaline circulation. Reviews of Geophysics, 33 (2): 151–173. Scott R B, Xu Y S. 2009. An update on the wind power input to the surface geostrophic flow of the World Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 56 (3): 295–304. Sheen K L, Brearley J A, Naveira Garabato A C, Smeed D A, Waterman S, Ledwell J R, Meredith M P, St Laurent L, Thurnherr A M, Toole J M, Watson A J. 2013. Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: results from the diapycnal and isopycnal mixing experiment in the Southern Ocean (DIMES). Journal of Geophysical Research: Oceans, 118 (6): 2 774–2 792. Simmons H L, Hallberg R W, Arbic B K. 2004. Internal wave generation in a global baroclinic tide model. Deep Sea Research Part II: Topical Studies in Oceanography, 51 (25–26): 3 043–3 068. St Laurent L. 2008. Turbulent dissipation on the margins of the South China Sea. Geophysical Research Letters, 35 (23): L23615. Talley L D. 2003. Shallow, intermediate, and deep overturning components of the global heat budget. Journal of Physical Oceanography, 33: 530–560. Talley L D. 2013. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography, 26 (1): 80–97. Thompson A F, Gille S T, MacKinnon J A, Sprintall J. 2007. Spatial and temporal patterns of small–scale mixing in Drake Passage. Journal of Physical Oceanography, 37 (3): 572–592. Toggweiler J R, Samuels B. 1998. On the ocean’s large–scale circulation near the limit of no vertical mixing. Journal of Physical Oceanography, 28 (9): 1 832–1 852. Waterman S, Naveira Garabato A C, Polzin K L. 2013. Internal waves and turbulence in the Antarctic Circumpolar Current. Journal of Physical Oceanography, 43 (2): 259–282. Watson A J, Ledwell J R, Messias M J, King B A, Mackay N, Meredith M P, Mills B, Naveira Garabato A C. 2013. Rapid cross–density ocean mixing at mid–depths in the Drake Passage measured by tracer release. Nature, 501 (7467): 408–411. Whalen C B, Talley L D, MacKinnon J A. 2012. Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophysical Research Letters, 39 (18): L18612. Wijesekera H, Padman L, Dillon T, Levine M, Paulson C, Pinkel R. 1993. The application of internal–wave dissipation models to a region of strong mixing. Journal of Physical Oceanography, 23 (2): 269–286. Wolfe C L, Cessi P. 2011. The adiabatic pole–to–pole overturning circulation. Journal of Physical Oceanography, 41 (9): 1 795–1 810. Wu L X, Jing Z, Riser S, Visbeck M. 2011. Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nature Geoscience, 4 (6): 363–366. Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annual Review of Fluid Mechanics, 36: 281–314. Wunsch C. 2002. What is the thermohaline circulation? Science, 298 (5596): 1 179–1 181. Zhang J B, Schmitt R W, Huang R X. 1999. The relative influence of diapycnal mixing and hydrologic forcing on the stability of the thermohaline circulation. Journal of Physical Oceanography, 29 (6): 1 096–1 108.