Spatial and Spatio-Temporal Log-Gaussian Cox Processes: Extending the Geostatistical Paradigm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gotway, C. A. and Young, L. J. (2002). Combining incompatible spatial data. <i>J. Amer. Statist. Assoc.</i> <b>97</b> 632–648.
Cressie, N. and Huang, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. <i>J. Amer. Statist. Assoc.</i> <b>94</b> 1330–1340.
Gneiting, T. (2002). Nonseparable, stationary covariance functions for space–time data. <i>J. Amer. Statist. Assoc.</i> <b>97</b> 590–600.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. <i>Biometrika</i> <b>57</b> 97–109.
Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. <i>Biometrika</i> <b>73</b> 13–22.
Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>71</b> 319–392.
Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008). Gaussian predictive process models for large spatial data sets. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>70</b> 825–848.
Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. <i>J. Amer. Statist. Assoc.</i> <b>99</b> 250–261.
Rue, H. and Held, L. (2005). <i>Gaussian Markov Random Fields</i>: <i>Theory and Applications. Monographs on Statistics and Applied Probability</i> <b>104</b>. Chapman & Hall/CRC, Boca Raton, FL.
Møller, J., Syversveen, A. R. and Waagepetersen, R. P. (1998). Log Gaussian Cox processes. <i>Scand. J. Stat.</i> <b>25</b> 451–482.
Finley, A. O., Sang, H., Banerjee, S. and Gelfand, A. E. (2009). Improving the performance of predictive process modeling for large datasets. <i>Comput. Statist. Data Anal.</i> <b>53</b> 2873–2884.
Ma, C. (2003). Families of spatio-temporal stationary covariance models. <i>J. Statist. Plann. Inference</i> <b>116</b> 489–501.
Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. <i>Stat. Comput.</i> <b>18</b> 343–373.
Brix, A. and Diggle, P. J. (2001). Spatiotemporal prediction for log-Gaussian Cox processes. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>63</b> 823–841.
Girolami, M. and Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>73</b> 123–214.
Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. <i>J. Appl. Probab.</i> <b>44</b> 458–475.
Besag, J., York, J. and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics. <i>Ann. Inst. Statist. Math.</i> <b>43</b> 1–59.
Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. <i>J. Amer. Statist. Assoc.</i> <b>88</b> 9–25.
Wall, M. M. (2004). A close look at the spatial structure implied by the CAR and SAR models. <i>J. Statist. Plann. Inference</i> <b>121</b> 311–324.
Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis–Hastings algorithms. <i>Statist. Sci.</i> <b>16</b> 351–367.
Baddeley, A. J., Møller, J. and Waagepetersen, R. (2000). Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. <i>Stat. Neerl.</i> <b>54</b> 329–350.
Ripley, B. D. (1976). The second-order analysis of stationary point processes. <i>J. Appl. Probab.</i> <b>13</b> 255–266.
Brown, P. E., Kåresen, K. F., Roberts, G. O. and Tonellato, S. (2000). Blur-generated non-separable space–time models. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>62</b> 847–860.
Diggle, P., Rowlingson, B. and Su, T.-L. (2005). Point process methodology for on-line spatio-temporal disease surveillance. <i>Environmetrics</i> <b>16</b> 423–434.
Best, N. G., Ickstadt, K. and Wolpert, R. L. (2000). Spatial Poisson regression for health and exposure data measured at disparate resolutions. <i>J. Amer. Statist. Assoc.</i> <b>95</b> 1076–1088.
Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>73</b> 423–498.
Wood, A. T. A. and Chan, G. (1994). Simulation of stationary Gaussian processes in $[0,1]^{d}$. <i>J. Comput. Graph. Statist.</i> <b>3</b> 409–432.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equation of state calculations by fast computing machines. <i>The Journal of Chemical Physics</i> <b>21</b> 1087–1092.
Cox, D. R. (1955). Some statistical methods connected with series of events. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>17</b> 129–157; discussion, 157–164.
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. <i>IEEE Trans. Pattern. Anal. Mach. Intell.</i> <b>6</b> 721–741.
Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of Langevin distributions and their discrete approximations. <i>Bernoulli</i> <b>2</b> 341–363.
Gamerman, D. and Lopes, H. F. (2006). <i>Markov Chain Monte Carlo</i>: <i>Stochastic Simulation for Bayesian Inference</i>, 2nd ed. Chapman & Hall/CRC, Boca Raton, FL.
Gelfand, A. E., Diggle, P. J., Fuentes, M. and Guttorp, P., eds. (2010). <i>Handbook of Spatial Statistics</i>. CRC Press, Boca Raton, FL.
Silverman, B. W. (1986). <i>Density Estimation for Statistics and Data Analysis</i>. Chapman & Hall, London.
Cressie, N. A. C. (1991). <i>Statistics for Spatial Data</i>. Wiley, New York.
Bartlett, M. S. (1975). <i>The Statistical Analysis of Spatial Pattern</i>. Chapman & Hall, London.
Cooper, D. and Chinemana, F. (2004). NHS direct derived data: An exciting new opportunity or an epidemiological headache? <i>J. Public Health</i> (<i>Oxf.</i>) <b>26</b> 158–160.
Diggle, P. J., Knorr-Held, L., Rowlingson, B., Su, T., Hawtin, P. and Bryant, T. (2003). Towards on-line spatial surveillance. In <i>Monitoring the Health of Populations</i>: <i>Statistical Methods for Public Health Surveillance</i> (R. Brookmeyer and D. Stroup, eds.). Oxford Univ. Press, Oxford.
Gamerman, D. (2010). Dynamic spatial models including spatial time series. In <i>Handbook of Spatial Statistics</i> (A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp, eds.) 437–448. CRC Press, Boca Raton, FL.
Gelfand, A. E. (2010). Misaligned spatial data: The change of support problem. In <i>Handbook of Spatial Statistics</i> (A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp, eds.) 517–539. CRC Press, Boca Raton, FL.
Gilks, W., Richardson, S. and Spiegelhalter, D. (1995). <i>Markov Chain Monte Carlo in Practice</i>. Chapman & Hall, London.
Gneiting, T. and Guttorp, P. (2010a). Continuous parameter stochastic process theory. In <i>Handbook of Spatial Statistics</i> (A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp, eds.) 17–28. CRC Press, Boca Raton, FL.
Gneiting, T. and Guttorp, P. (2010b). Continuous parameter spatio-temporal processes. In <i>Handbook of Spatial Statistics</i> (A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp, eds.) 427–436. CRC Press, Boca Raton, FL.
López-Abente, G., Ramis, R., Pollán, M., Aragonés, N., Pérez-Gómez, B., Gómez-Barroso, D., Carrasco, J. M., Lope, V., García-Pérez, J., Boldo, E. and García-Mendizábal, M. J. (2006). ATLAS municipal de mortalidad por cáncer en España, 1989–1998. Instituto de Salud Carlos III, Madrid.
Matérn, B. (1960). <i>Spatial Variation</i>. Meddelanden fran Statens Skogsforskningsinstitut, Stockholm. Band 49, number 5.
R Core Team. (2013). <i>R</i>: <i>A Language and Environment for Statistical Computing</i>. Vienna, Austria.
Spiegelhalter, D. J., Thomas, A. and Best, N. G. (1999). WinBUGS Version 1.2 User Manual.
Bartlett, M. S. (1964). The spectral analysis of two-dimensional point processes. <i>Biometrika</i> <b>51</b> 299–311.
Berman, M. and Diggle, P. (1989). Estimating weighted integrals of the second-order intensity of a spatial point process. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>51</b> 81–92.
Bharti, A. R., Nally, J. E., Ricaldi, J. N., Matthias, M. A., Diaz, M. M., Lovett, M. A., Levett, P. N., Gilman, R. H., Willig, M. R., Gotuzzo, E. and Vinetz, J. M. (2003). Leptospirosis: A zoonotic disease of global importance. <i>Lancet. Infect. Dis.</i> <b>3</b> 757–771.
Brix, A. and Diggle, P. J. (2003). Corrigendum: Spatio-temporal prediction for log-Gaussian Cox processes. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>65</b> 946.
Cooper, D. L., Smith, G. E., O’Brien, S. J., Hollyoak, V. A. and Baker, M. (2003). What can analysis of calls to NHS direct tell us about the epidemiology of gastrointestinal infections in the community? <i>J. Infect.</i> <b>46</b> 101–105.
Dark, S. J. and Bram, D. (2007). The modifiable areal unit problem (MAUP) in physical geography. <i>Progress in Physical Geography</i> <b>31</b> 471–479.
Diggle, P. J., Zheng, P. and Durr, P. (2005). Non-parametric estimation of spatial segregation in a multivariate point process. <i>Applied Statistics</i> <b>54</b> 645–658.
Diggle, P. J., Moraga, P., Rowlingson, B. and Taylor, B. M. (2013). Supplement to “Spatial and spatio-temporal log-Gaussian Cox processes: Extending the geostatistical paradigm.” <a href="DOI:10.1214/13-STS441SUPP">DOI:10.1214/13-STS441SUPP</a>.
Donnelly, C. A., Woodroffe, R., Cox, D. R., Bourne, F. J., Cheesman, C. L., Clifton-Hadley, R. S., Wei, G., Gettinby, G., Gilks, P., Jenkins, H., Johnston, W. T., Le Fevre, A. M., McInery, J. P. and Morrison, W. I. (2006). Positive and negative effects of widespread badger culling on tuberculosis in cattle. <i>Nature</i> <b>485</b> 843–846.
Frigo, M. and Johnson, S. G. (2011). FFTW fastest Fourier transform in the west. Available at <a href="http://www.fftw.org/">http://www.fftw.org/</a>.
Gelfand, A. E. (2012). Hierarchical modelling for spatial data problems. <i>Spatial Statistics</i> <b>1</b> 30–39.
Gerrard, D. J. (1969). Competition Quotient: A New Measure of the Competition Affecting Individual Forest Trees. <i>Research Bulletin</i> <b>20</b>. Agricultural Experiment Station, Michigan State Univ., East Lansing, MI.
Geyer, C. (1999). Likelihood inference for spatial point processes: Likelihood and computation. In <i>Stochastic Geometry</i> (<i>Toulouse</i>, 1996), (O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout, eds.). <i>Monogr. Statist. Appl. Probab.</i> <b>80</b> 79–140. Chapman & Hall/CRC, Boca Raton, FL.
Greenland, S. and Morgenstern, H. (1990). Ecological bias, confounding and effect modification. <i>International Journal of Epidemiology</i> <b>18</b> 269–274.
Haran, M. and Tierney, L. (2012). On automating Markov chain Monte Carlo for a class of spatial models. Available at <a href="http://arxiv.org/abs/1205.0499">http://arxiv.org/abs/1205.0499</a>.
Johnson, M. A., Smith, H., Joseph, P., Gilman, R. H., Bautista, C. T., Campos, K. J., Cespedes, M., Klatsky, P., Vidal, C., Terry, H., Calderon, M. M., Coral, C., Cabrera, L., Parmar, P. S. and Vinetz, J. M. (2004). Environmental exposure and leptospirosis, Peru. <i>Emerging Infectious Diseases</i> <b>10</b> 1016–1022.
Kelsall, J. and Wakefield, J. (2002). Modeling spatial variation in disease risk: A geostatistical approach. <i>J. Amer. Statist. Assoc.</i> <b>97</b> 692–701.
Ko, A. I., Reis, M. G., Dourado, C. M. R., Johnson, W. D. Jr. and Riley, L. W. (1999). Urban epidemic of severe leptospirosis in Brazil. Salvador Leptospirosis Study Group. <i>Lancet</i> <b>354</b> 820–825.
Li, Y., Brown, P. E., Gesink, D. C. and Rue, H. (2012). Log Gaussian Cox processes and spatially aggregated disease incidence data. <i>Stat. Methods Med. Res.</i> <b>21</b> 479–507.
Ma, C. (2008). Recent developments on the construction of spatio-temporal covariance models. <i>Stoch. Environ. Res. Risk Assess.</i> <b>22</b> 39–47.
Mark, A. L. and Shepherd, D. H. (2004). NHS Direct: Managing demand for primary care? <i>International Journal of Health Planning and Management</i> <b>19</b> 79–91.
McBride, A. J., Athanazio, D. A., Reis, M. G. and Ko, A. I. (2005). Leptospirosis. <i>Current Opinions in Infectious Diseases</i> <b>18</b> 376–386.
Mugglin, A. S., Carlin, B. P. and Gelfand, A. E. (2000). Fully model-based approaches for spatially misaligned data. <i>J. Amer. Statist. Assoc.</i> <b>95</b> 877–887.
Piantadosi, S., Byar, D. P. and Green, S. B. (1988). The ecological fallacy. <i>Am. J. Epidemiol.</i> <b>127</b> 893–904.
Ripley, B. D. (1977). Modelling spatial patterns. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>39</b> 172–212.
Rodrigues, A. and Diggle, P. J. (2010). A class of convolution-based models for spatio-temporal processes with non-separable covariance structure. <i>Scand. J. Stat.</i> <b>37</b> 553–567.
Taylor, B. M. and Diggle, P. J. (2013a). INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes. <i>J. Stat. Comput. Simul.</i> To appear. Preprint available at <a href="http://arxiv.org/abs/1202.1738">http://arxiv.org/abs/1202.1738</a>.
Taylor, B. M. and Diggle, P. J. (2013b). Corrigendum: Spatiotemporal prediction for log-Gaussian Cox processes. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>75</b> 601–602.
Taylor, B. M., Davies, T. M., Rowlingson, B. S. and Diggle, P. J. (2013). lgcp: Inference with spatial and spatio-temporal log-Gaussian Cox processes in R. <i>Journal of Statistical Software</i> <b>52</b> Issue 4.
Woodroffe, R., Donnelly, C. A., Johnston, W. T., Bourne, F. J., Cheesman, C. L., Clifton-Hadley, R. S., Cox, D. R., Gettinby, G., Hewinson, R. G., Le Fevre, A. M., McInery, J. P. and Morrison, W. I. (2005). Spatial association of <i>Mycobacterium bovis</i> infection in cattle and badgers <i>Meles meles. Journal of Applied Ecology</i> <b>42</b> 852–862.