Spatial ability contributes to memory for delayed intentions
Tóm tắt
Most everyday activities involve delayed intentions referring to different event structures and timelines. Yet, past research has mostly considered prospective memory (PM) as a dual-task phenomenon in which the primary task to fulfill PM intentions is realized within an ongoing secondary task. We hypothesized that these simplified simulations of PM may have obscured the role of spatial relational processing that is functional to represent and meet the increased temporal demands in more complex PM scenarios involving multiple timelines. To test this spatiotemporal hypothesis, participants monitored four digital clocks, with PM deadlines referring either to the same clock (single-context condition) or different clocks (multiple-context condition), along with separate tests of spatial ability (mental rotation task) and executive functioning (working memory updating). We found that performance in the mental rotation task incrementally explained PM performance in the multiple-context, but not in the single-context, condition, even after controlling for individual differences in working memory updating and ongoing task performance. These findings suggest that delayed intentions occurring in multiple ongoing task contexts reflect independent contributions of working memory updating and mental rotation and that spatial relational processing may specifically be involved in higher cognitive functions, such as complex PM in multiple contexts or multitasking.
Tài liệu tham khảo
Anderson, F. T., McDaniel, M. A., & Einstein, G. O. (2017). Remembering to remember: An examination of the cognitive processes underlying prospective memory. In J. H. Byrne (Ed.), Learning and memory: A comprehensive reference, (vol. 2, pp. 451–463). Oxford: Elsevier.
Bender, A., & Beller, S. (2014). Mapping spatial frames of reference onto time: A review of theoretical accounts and empirical findings. Cognition, 132(3), 342–382. https://doi.org/10.1016/j.cognition.2014.03.016.
Bonato, M., Zorzi, M., & Umiltà, C. (2012). When time is space: Evidence for a mental time line. Neuroscience & Biobehavioral Reviews, 36(10), 2257–2273. https://doi.org/10.1016/j.neubiorev.2012.08.007.
Boroditsky, L. (2000). Metaphoric structuring: Understanding time through spatial metaphors. Cognition, 75(1), 1–28. https://doi.org/10.1016/S0010-0277(99)00073-6.
Brandimonte, M. A., Einstein, G. O., & McDaniel, M. A. (2014). Prospective memory: Theory and applications. New York: Psychology Press.
Brewer, G. A., Knight, J. B., Marsh, R. L., & Unsworth, N. (2010). Individual differences in event-based prospective memory: Evidence for multiple processes supporting cue detection. Memory & Cognition, 38(3), 304–311. https://doi.org/10.3758/MC.38.3.304.
Burgess, P. W., Gonen-Yaacovi, G., & Volle, E. (2011). Functional neuroimaging studies of prospective memory: What have we learnt so far? Neuropsychologia, 49(8), 2246–2257. https://doi.org/10.1016/j.neuropsychologia.2011.02.014.
Burgess, P. W., Veitch, E., de Lacy Costello, A., & Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia, 38(6), 848–863. https://doi.org/10.1016/S0028-3932(99)00134-7.
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511571312.
Casasanto, D., & Boroditsky, L. (2008). Time in the mind: Using space to think about time. Cognition, 106(2), 579–593. https://doi.org/10.1016/j.cognition.2007.03.004.
Craik, F. I. M., & Bialystok, E. (2006). Planning and task management in older adults: Cooking breakfast. Memory & Cognition, 34(6), 1236–1249. https://doi.org/10.3758/BF03193268.
Dehaene, S., & Brannon, E. (2011). Space, time and number in the brain: Searching for the foundations of mathematical thought. London: Elsevier.
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149.
Jager, G., & Postma, A. (2003). On the hemispheric specialization for categorical and coordinate spatial relations: A review of the current evidence. Neuropsychologia, 41(4), 504–515.
Janczyk, M., Renas, S., & Durst, M. (2017). Identifying the locus of compatibility-based backward crosstalk: Evidence from an extended PRP paradigm. Journal of Experimental Psychology: Human Perception and Performance, 44(2), 261–276. https://doi.org/10.1037/xhp0000445.
Kliegel, M., Mackinlay, R. J., & Jäger, T. (2008). Complex prospective memory: Development across the lifespan and the role of task interruption. Developmental Psychology, 44(2), 612–617. https://doi.org/10.1037/0012-1649.44.2.612.
Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking: An integrative review of dual-task and task-switching research. Psychological Bulletin, 144(6), 557–583.
Kubik, V., Zimmermann, M., Del Missier, F., & Mäntylä, T. (2020). Beyond dual-tasking: Spatial abilities are related to multitasking costs. Pre-print.
Kübler, S., Reimer, C. B., Strobach, T., & Schubert, T. (2018). The impact of free-order and sequential-order instructions on task-order regulation in dual tasks. Psychological Research, 82(1), 40–53. https://doi.org/10.1007/s00426-017-0910-6.
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498. https://doi.org/10.1111/1467-8624.ep7252392.
Logie, R. H., Trawley, S., & Law, A. (2011). Multitasking: Multiple, domain-specific cognitive functions in a virtual environment. Memory & Cognition, 39(8), 1561–1574. https://doi.org/10.3758/s13421-011-0120-1.
Mackinlay, R. J., Kliegel, M., & Mäntylä, T. (2009). Predictors of time-based prospective memory in children. Journal of Experimental Child Psychology, 102(3), 251–264. https://doi.org/10.1016/j.jecp.2008.08.006.
Mäntylä, T. (2013). Gender differences in multitasking reflect spatial ability. Psychological Science, 24(4), 514–520. https://doi.org/10.1177/0956797612459660.
Mäntylä, T., Carelli, M. G., & Forman, H. (2007). Time monitoring and executive functioning in children and adults. Journal of Experimental Child Psychology, 96(1), 1–19. https://doi.org/10.1016/j.jecp.2006.08.003.
Mäntylä, T., Coni, V., Kubik, V., Todorov, I., & Del Missier, F. (2017). Time takes space: Selective effects of multitasking on concurrent spatial processing. Cognitive Processing, 18(3), 229–235. https://doi.org/10.1007/s10339-017-0799-4.
Mäntylä, T., & Todorov, I. (2013). Questioning anecdotal beliefs and scientific findings: A reply to Strayer, Medeiros-Ward, and Watson (2013). Psychological Science, 24(5), 811–812. https://doi.org/10.1177/0956797612475319.
Martin, M., Kliegel, M., & McDaniel, M. A. (2003). The involvement of executive functions in prospective memory performance of adults. International Journal of Psychology, 38(4), 195–206. https://doi.org/10.1080/00207590344000123.
McDaniel, M. A., & Einstein, G. O. (2007). Prospective memory: An overview and synthesis of an emerging field. Thousand Oaks: Sage.
McNerney, M. W., & West, R. (2007). An imperfect relationship between prospective memory and the prospective interference effect. Memory & Cognition, 35(2), 275–282. https://doi.org/10.3758/BF03193448.
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734.
Newcombe, N. S. (2016). Thinking spatially in the science classroom. Current Opinion in Behavioral Sciences, 10, 1–6. https://doi.org/10.1016/j.cobeha.2016.04.010.
Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of spatial representation and reasoning. Cambridge: MIT Press.
Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In J. S. Gero (Ed.), Studying Visual and Spatial Reasoning for Design Creativity, (pp. 179–192). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-9297-4_10.
Núñez, R., & Cooperrider, K. (2013). The tangle of space and time in human cognition. Trends in Cognitive Sciences, 17(5), 220–229. https://doi.org/10.1016/j.tics.2013.03.008.
Occhionero, M., Esposito, M. J., Cicogna, P. C., & Nigro, G. (2010). The effects of ongoing activity on time estimation in prospective remembering. Applied Cognitive Psychology, 24(6), 774–791. https://doi.org/10.1002/acp.1585.
Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220–244.
Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse Mental Rotations Test: different versions and factors that affect performance. Brain and Cognition, 28, 39–58. https://doi.org/10.1006/brcg.1995.1032.
Redick, T. S., Shipstead, Z., Meier, M. E., Montroy, J. J., Hicks, K. L., Unsworth, N., & Engle, R. W. (2016). Cognitive predictors of a common multitasking ability: Contributions from working memory, attention control, and fluid intelligence. Journal of Experimental Psychology: General, 145(11), 1473–1492. https://doi.org/10.1037/xge0000219.
Rendell, P. G., & Craik, F. I. M. (2000). Virtual week and actual week: Age-related differences in prospective memory. Applied Cognitive Psychology, 14(7), S43–S62. https://doi.org/10.1002/acp.770.
Rideout, V. J., Foehr, U. G., & Roberts, D. F. (2010). Generation M2: Media in the lives of 8-to 18-year-olds. Menlo Park: Henry J. Kaiser Family Foundation.
Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. Trends in Cognitive Sciences, 20(9), 676–688. https://doi.org/10.1016/j.tics.2016.07.002.
Salthouse, T. A., Atkinson, T. M., & Berish, D. E. (2003). Executive functioning as a potential mediator of age-related cognitive decline in normal adults. Journal of Experimental Psychology: General, 132(4), 566–594. https://doi.org/10.1037/0096-3445.132.4.566.
Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concurrent multitasking. Psychological Review, 115(1), 101–130. https://doi.org/10.1037/0033-295X.115.1.101.
Schnitzspahn, K. M., Stahl, C., Zeintl, M., Kaller, C. P., & Kliegel, M. (2013). The role of shifting, updating, and inhibition in prospective memory performance in young and older adults. Developmental Psychology, 49(8), 1544–1553. https://doi.org/10.1037/a0030579.
Schubert, T. (1999). Processing differences between simple and choice reactions affect bottleneck localization in overlapping tasks. Journal of Experimental Psychology: Human Perception and Performance, 25(2), 408–425. https://doi.org/10.1037/0096-1523.25.2.408.
Scullin, M. K., McDaniel, M. A., Dasse, M. N., Lee, J., Kurinec, C. A., Tami, C., & Krueger, M. L. (2018). Thought probes during prospective memory encoding: Evidence for perfunctory processes. PLoS One, 13(6), e0198646. https://doi.org/10.1371/journal.pone.0198646.
Shelton, J. T., & Scullin, M. K. (2017). The dynamic interplay between bottom-up and top-down processes supporting prospective remembering. Current Directions in Psychological Science, 26(4), 352–358. https://doi.org/10.1177/0963721417700504.
Smith, R. E. (2003). The cost of remembering to remember in event-based prospective memory: Investigating the capacity demands of delayed intention performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(3), 347–361. https://doi.org/10.1037/0278-7393.29.3.347.
Smith, R. E. (2016). Prospective memory in context. Psychology of Learning and Motivation, 66, 2011–2249.
Strayer, D. L., Medeiros-Ward, N., & Watson, J. M. (2013). Gender invariance in multitasking: A comment on Mäntylä (2013). Psychological Science, 24(5), 809–810. https://doi.org/10.1177/0956797612465199.
Todorov, I., Del Missier, F., Konke, L. A., & Mäntylä, T. (2015). Deadlines in space: Selective effects of coordinate spatial processing in multitasking. Memory & Cognition, 43(8), 1216–1228. https://doi.org/10.3758/s13421-015-0529-z.
Todorov, I., Del Missier, F., & Mäntylä, T. (2014). Age-related differences in multiple task monitoring. PLoS One, 9(9), e107619. https://doi.org/10.1371/journal.pone.0107619.
Todorov, I., Kubik, V., Carelli, M. G., Del Missier, F., & Mäntylä, T. (2018). Spatial offloading in multiple task monitoring. Journal of Cognitive Psychology, 30(2), 230–241. https://doi.org/10.1080/20445911.2018.1436551.
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/10.1037/a0028446.
Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604. https://doi.org/10.2466/pms.1978.47.2.599.
Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Science, 7, 483–488. https://doi.org/10.1016/j.tics.2003.09.002.
Wilhelm, O., Hildebrandt, A., & Oberauer, K. (2013). What is working memory capacity, and how can we measure it? Frontiers in Psychology, 4, 433. https://doi.org/10.3389/fpsyg.2013.00433.