Sparse regularization in limited angle tomography

Applied and Computational Harmonic Analysis - Tập 34 Số 1 - Trang 117-141 - 2013
Jürgen Frikel1,2
1Institute of Biomathematics and Biometry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764, Germany
2Zentrum Mathematik, M6, Technische Universität München, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bredies, 2010, Total generalized variation, SIAM J. Imaging Sci., 3, 492, 10.1137/090769521

Bredies, 2008, Linear convergence of iterative soft-thresholding, J. Fourier Anal. Appl., 14, 813, 10.1007/s00041-008-9041-1

Candès, 2006, Fast discrete curvelet transforms, Multiscale Model. Simul., 5, 861, 10.1137/05064182X

Candès

E.J. Candes, D.L. Donoho, Curvelets and reconstruction of images from noisy radon data, vol. 4119, SPIE, 2000 pp. 108–117, http://link.aip.org/link/?PSI/4119/108/1.

Candès, 2002, Recovering edges in ill-posed inverse problems: optimality of curvelet frames, Ann. Statist., 30, 784, 10.1214/aos/1028674842

Candès, 2004, New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities, Comm. Pure Appl. Math., 57, 219, 10.1002/cpa.10116

Candès, 2005, Continuous curvelet transform. I. Resolution of the wavefront set, Appl. Comput. Harmon. Anal., 19, 162, 10.1016/j.acha.2005.02.003

Candès, 2005, Continuous curvelet transform. II. Discretization and frames, Appl. Comput. Harmon. Anal., 19, 198, 10.1016/j.acha.2005.02.004

Caselles, 2007, The discontinuity set of solutions of the TV denoising problem and some extensions, Multiscale Model. Simul., 6, 879, 10.1137/070683003

Chui, 1992, An Introduction to Wavelets, vol. 1

Colonna, 2010, Radon transform inversion using the shearlet representation, Appl. Comput. Harmon. Anal., 29, 232, 10.1016/j.acha.2009.10.005

Daubechies, 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57, 1413, 10.1002/cpa.20042

Davison, 1983, The ill-conditioned nature of the limited angle tomography problem, SIAM J. Appl. Math., 43, 428, 10.1137/0143028

Easley, 2008, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. Harmon. Anal., 25, 25, 10.1016/j.acha.2007.09.003

Engl, 1996, Regularization of Inverse Problems, vol. 375

Fadili, 2011, Total variation projection with first order schemes, IEEE Trans. Image Process., 20, 657, 10.1109/TIP.2010.2072512

J. Frikel, A new framework for sparse regularization in limited angle X-ray tomography, in: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, April 2010, pp. 824–827.

Frikel, 2011, Short communication: dimensionality reduction of curvelet sparse regularizations in limited angle tomography, Proc. Appl. Math. Mechan. (PAMM), 11, 847, 10.1002/pamm.201110412

Griesse, 2008, A semismooth Newton method for Tikhonov functionals with sparsity constraints, Inverse Problems, 24, 035007, 10.1088/0266-5611/24/3/035007

Jørgensen

Herman, 2008, Image reconstruction from a small number of projections, Inverse Problems, 24, 045011, 10.1088/0266-5611/24/4/045011

Kolehmainen, 2003, Statistical inversion for medical X-ray tomography with view radiographs: II. Application to dental radiology, Phys. Med. Biol., 48, 1465, 10.1088/0031-9155/48/10/315

Kutyniok, 2009, Resolution of the wavefront set using continuous shearlets, Trans. Amer. Math. Soc., 361, 2719, 10.1090/S0002-9947-08-04700-4

Lorenz, 2008, Optimal convergence rates for Tikhonov regularization in Besov scales, Inverse Problems, 24, 055010, 10.1088/0266-5611/24/5/055010

Ma, 2010, The Curvelet Transform, IEEE Signal Process. Mag., 27, 118, 10.1109/MSP.2009.935453

Mallat, 2009

Natterer, 1986

Quinto, 1993, Singularities of the X-ray transform and limited data tomography in R2 and R3, SIAM J. Math. Anal., 24, 1215, 10.1137/0524069

Quinto, 2006, An introduction to X-ray tomography and Radon transforms, vol. 63, 1

Radiopedia.org, http://radiopaedia.org/cases/brainstem-glioma, 2010.

Rantala, 2006, Wavelet-based reconstruction for limited angle X-ray tomography, IEEE Trans. Med. Imag., 25, 210, 10.1109/TMI.2005.862206

Ring, 2000, Structural properties of solutions to total variation regularization problems, Math. Model. Numer. Anal., 34, 799, 10.1051/m2an:2000104

Rockafellar, 1970, Convex Analysis, vol. 28

Scherzer, 2009, Variational Methods in Imaging, vol. 167

Stein, 1971, Introduction to Fourier Analysis on Euclidean Spaces, vol. 32