Sparse microwave imaging: Principles and applications

Springer Science and Business Media LLC - Tập 55 Số 8 - Trang 1722-1754 - 2012
Bingchen Zhang1, Wen Hong1, Yirong Wu2
1Science and Technology on Microwave Imaging Laboratory, Beijing, 100190, China
2Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Curlander J C, McDonough R N. Synthetic Aperture Radar: Systems and Signal Processing. New York: Wiley, 1991

Henderson F M, Lewis A J. Principles and applications of imaging radar. In: Manual of Remote Sensing. New York: John Wiley and Sons, 1998

Wiley C, Ariz P. Pulsed Doppler Radar Methods and Apparatus. US Patent 3,196,436. 1965

Wiley C A. Synthetic aperture radars: a paradigm for technology evolution. IEEE Trans Aerosp Electron Syst, 1985: 21: 440–443

Wikipedia. Synthetic Aperture Radar. https://en.wikipedia.org/wiki/Synthetic_aperture_radar

NASA. Missions-Seasat 1. http://science.nasa.gov/missions/seasat-1/

Jordan R L. The Seasat-A synthetic aperture radar system. IEEE J Ocean Eng, 1980, 5: 154–164

CSA. CSA: RadarSat-1. http://www.asc-csa.gc.ca/eng/satellites/radarsat1/

DLR. TerraSAR-X-Germany’s radar eye in space. http://www.dlr.de/eo/en/desktopdefault.aspx/tabid-5725/9296_read-15979/

Jakowatz C V, Wahl D E, Eichel P H, et al. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach. Norwell: Kluwer Academic Publishers, 1996

Massonnet D, Souyris J C. Imaging with Synthetic Aperture Radar. Lausanne: EFPL Press, 2008

Brown W M, Porcello L J. An introduction to synthetic-aperture radar. IEEE Spectrum, 1969, 6: 52–62

Sherwin C W, Ruina J P, Rawcliffe R D. Some early developments in synthetic aperture radar systems. IRE Trans Military Electron, 1962, 1051: 111–115

Moore G E. Cramming more components onto integrated circuits. Electron Mag, 1998, 86: 82–85

Woodward P M. Probability and Information Theory, with Application to Radar. New York: Pergamon, 1953

Cook C E, Bernfeld M. Radar Signals-An Introduction to Theory and Application. Norwood: Artech House, 1993

Nyquist H. Certain topics in telegraph transmission theory. Trans Amer Inst Electr Engin, 1928, 47: 617–644

Shannon C E. Communication in the presence of noise. Proc IRE, 1949, 37: 10–21

Baraniuk R G, Candès E, Elad M, et al. Applications of sparse representation and compressive sensing. Proc IEEE, 2010, 98: 906–09

Russell B. History of Western Philosophy. London: George Allen & Unwin Ltd, 1946

Donoho D L. Compressed Sensing. IEEE Trans Inf Theory, 2006. 52: 1289–1306

Candès E J, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans Inf Theory, 2006, 52: 5406–5425

Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math, 2006, 59: 1207–1223

Mallat S, Yu G. Super-resolution with sparse mixing estimators. IEEE Trans Image Process, 2010, 19: 2889–2900

Zhang Y, Mei S, Chen Q, et al. A novel image/video coding method based on compressed sensing theory. In: Proc of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, 2008. 1361–1364

Berger C R, Zhou S, Preisig J, et al. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing. IEEE Trans Signal Process, 2010, 58: 1708–1721

Baraniuk R, Steeghs P. Compressive radar imaging. In: Proc of IEEE Radar Conference, Boston, 2007. 128–133

Patel V M, Easley G R, Healy D, et al. Compressed synthetic aperture radar. IEEE J Sel Top Signal Process, 2010, 4: 244–254

Ender J H G. On compressive sensing applied to radar. Signal Process, 2010, 90: 1402–1414

Wu Y R. Studies on theory, system, and methodology of Sparse Microwave Imaging. Statement Tasks and Project Plan of 973 Program: 2009

Cumming I G, Wong F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Norwood: Artech House, 2004

Raney R K, Runge H, Bamler R, et al. Precision SAR processing using chirp scaling. IEEE Trans Geosci Remote Sens, 1994, 32: 786–799

Bamler R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms. IEEE Trans Geosci Remote Sens, 1992, 30: 706–713

Basu S, Bresler Y. O(N 2 log2 N) filtered backprojection reconstruction algorithm for tomography. IEEE Trans Image Process, 2000, 9: 1760–1773

Xiao S, Munson Jr D C, Basu S, et al. An N 2 logN back-projection algorithm for SAR image formation. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2000

Suess M, Grafmüller B, Zahn R. A novel high resolution, wide swath SAR system.In: Proc of IEEE International Geoscience and Remoye Sensing Symposium (IGARSS), Sydney, 2001. 1013–1015

Suess M. Side-Looking Synthetic Aperture Radar System. European Patent 1,241,487. 2006

Currie A, Brown M A. Wide-swath SAR. IEE Proc F Radar Signal Process, 1992, 139: 122–135

Elad M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. New York: Springer, 2010

Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process, 1993, 41: 3397–3415

Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM J Sci Comput, 1999, 20: 33–61

Candès E J, Tao T. Decoding by linear programming. IEEE Trans Inf Theory, 2005, 51: 4203–4215

Candès E, Tao T. The Dantzig selector: Statistical estimation when p is much larger than n. The Annal Stat, 2007, 35: 2313–2351

Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52: 489–509

Candès E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problem, 2007, 23: 969–985

Tsaig Y, Donoho D L. Extensions of compressed sensing. Signal Process, 2006, 86: 549–571

Baraniuk R G. More is less: Signal processing and the data deluge. Science, 2011, 331: 717–719

Baron D, Wakin M B, Duarte M F, et al. Distributed Compressed Sensing. Technical Report. Rice: Rice University, 2005, http://dsp.rice.edu/cs/

Duarte M F, Sarvotham S, Baron D, et al. Distributed compressed sensing of jointly sparse signals. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2005. 1537–1541

Zhang Z, Zhang B C, Hong W, et al. Waveform design for Lq regularization based radar imaging and an approach to radar imaging with non-moving platform. In: Proc of European Conference on Synthetic Aperture Radar (EuSAR), Nuremberg, 2012

Ahmed N, Natarajan T, Rao K R. Discrete cosine transform. IEEE Trans Comput, 1974, 100: 90–93

Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM Publications, 2006

Ron A, Shen Z. Affine systems in L 2(d): the analysis of the Analysis operator. J Function Analys, 1997, 148: 408–447

Velisavljevic V, Dragotti P L, Vetterli M. Directional wavelet transforms and frames. In: Proc of Int Conf Image Processing, Rochester, 2002. 589–592

Candès E J. Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges. Technical Report. DTIC Document, 2000. www.curvelet.org/papers/Curve99.pdf

Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381: 607–609

Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images. Raleigh: SciTech Publishing, 2004

Tian Y, Jiang C L, Lin Y G, et al. An evaluation method for sparse microwave imaging radar system using phase diagrams. In: Proc of CIE Radar Conference, Chengdu, 2011

Zhang B C, Jiang H, Hong W, et al. Synthetic aperture radar imaging of sparse targets via compressed sensing. In: Proc of 8th European Conference on Synthetic Aperture Radar (EUSAR), Aachen, 2010

Jiang H, Zhang B C, Lin Y G, et al. Random noise SAR based on compressed sensing. In: Proc of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, 2010. 4624–4627

Shastry M C, Narayanan R M, Rangaswamy M. Compressive radar imaging using white stochastic waveforms. In: Proc of International Waveform Diversity and Design Conference (WDD), Niagara Falls, 2010. 90–94

Bahai A R S, Saltzberg B R, Ergen M. Multi-Carrier Digital Communications: Theory and Applications of OFDM. New York, NY: Springer Science and Business Media Inc, 2004

Berger C R, Zhou S, Willett P, et al. Compressed sensing for OFDM/MIMO radar. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2008. 213–217

Berger C R, Demissie B, Heckenbach J, et al. Signal processing for passive radar using OFDM waveforms. IEEE J Sel Top Signal Process, 2010, 4: 226–238

Vetterli M, Marziliano P, Blu T. Sampling signals with finite rate of innovation. IEEE Trans Signal Process, 2002, 50: 1417–1428

Healy D. Analog-to-Information (A-to-I). 2005. http://www.darpa.mil/mto/solicitations/baa05-35/s/index.html . dARPA/MTO Broad Agency Announcement (BAA) #05-35

Healy D, Brady D J. Compression at the physical interface. IEEE Signal Process Mag, 2008, 25: 67–71

Laska J N, Kirolos S, Duarte M F, et al. Theory and implementation of an analog-to-information converter using random demodulation. In: Proc of IEEE International Symposium on Circuits and Systems (ISCAS), New Orleans, 2007. 1959–1962

Eldar Y C. Compressed Sensing of Analog Signals. Comput Res Reposit, 2008

Mishali M, Eldar Y C, Elron A. Xampling, Part I: Practice. ArXiv:09110519. 2009. http://arxiv.org/pdf/0911.0519v3

Mishali M, Eldar Y C. From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals. IEEE J Sel Top Signal Process, 2010, 4: 375–391

Mishali M, Eldar Y, Dounaevsky O, et al. Xampling: Analog to digital at sub-Nyquist rates. IET Circ Dev Syst, 2011, 5: 8–20

Mishali M, Eldar Y C. Xampling: Compressed sensing of analog signals. ArXiv:11032960. 2011. http://arxiv.org/pdf/1103.2960

Tropp J A, Laska J N, Duarte M F, et al. Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE Trans Inf Theory, 2010, 56: 520–544

Balakrishnan A. On the problem of time jitter in sampling. IRE Trans Inform Theory, 1962, 8: 226–236

Sun J P, Zhang Y X, Chen Z B, et al. A novel spaceborne SAR wide-swath imaging approach based on Poisson disk-like nonuniform sampling and compressive sensing. Sci China Inf Sci, 2012, 55: 1876–1887

Candès E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Process Mag, 2008, 25, 2: 21–30

Carrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar-Signal Processing Algorithms. Norwood, 1995

Belcher D P, Baker C J. High resolution processing of hybrid strip-map/spotlight mode SAR. IEE Proc Radar Sonar Nav, 1996, 143: 366–374

Mittermayer J, Lord R, Borner E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm. In: Proc of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toulouse, 2003. 1462–1464

De Zan F, Guarnieri A M. TOPSAR: Terrain observation by progressive scans. IEEE Trans Geosci Remote Sens, 2006, 44: 2352–2360

Tropp J A, Wright S J. Computational methods for sparse solution of linear inverse problems. Proc IEEE, 2010, 98: 948–958

Kim S J, Koh K, Lustig M, et al. An interior-point method for large-scale l1-regularized least squares. IEEE J Sel Top Signal Process, 2007, 1: 606–617

Candès E, Romberg J. l1-magic: Recovery of sparse signals via convex Programming. 2005. www.acm.caltech.edu/l1magic/downloads/l1magic.pdf

Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J Sel Top Signal Process, 2007, 1: 586–597

Van Den Berg E, Friedlander M. Probing the Pareto frontier for basis pursuit solutions. SIAM J Sci Comput, 2008, 31: 890–912

Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math, 2004, 57: 1413–1457

Bioucas-Dias J M, Figueiredo M A T. Two-step algorithms for linear inverse problems with non-quadratic regularization. In: Proc of IEEE Int Conf Image Processing, San Antonio, 2007

Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci, 2009, 2: 183–202

Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM J Imag Sci, 2008, 1: 143–168

Hale E T, Yin W, Zhang Y. Fixed-point continuation for L1 minimization: methodology and convergence. SIAM J Optim, 2008: 1107–1130

Hale E T, Yin W, Zhang Y. Fixed-point continuation applied to compressed sensing: implementation and numerical experiments. J Comput Math, 2010, 28: 170–194

Becker S, Bobin J, Candès E. NESTA: A fast and accurate first-order method for sparse recovery. ArXiv: 09043367, 2009. http://arxiv.org/pdf/0904.3367

Becker S R, Candès E J, Grant M C. Templates for convex cone problems with applications to sparse signal recovery. Math Program Comput, 2011, 3: 165–218

Yang J, Zhang Y. Alternating direction algorithms for ℓ 1-problems in compressive sensing. ArXiv:09121185, 2009. http://arxiv.org/pdf/0912.1185

Lu Z, Pong T K, Zhang Y. An Method for Finding Dantzig Selectors. ArXiv: 10114604, 2010. http://arxiv.org/pdf/1011.4604

Davenport M A, Duarte M F, Eldar Y C, et al. Chapter I: Introduction to compressed sensing. In: Compressed Sensing: Theory and Applications. Cambridge: Cambridge University Press, 2012

Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory, 2007, 53: 4655–4666

Donoho D L, Drori I, Tsaig Y, et al. Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit. Technical Report. Department of Statistics, Stanford University, 2006. http://nmetis.dk/pic/Speciale/HenrikPedersen/Henrik%20Pederse%ns%20Artikler/Compressed%20Sensing/Donoho.pdf

Blumensath T, Davies M E. Gradient pursuits. IEEE Trans Signal Process, 2008, 56: 2370–2382

Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory, 2009, 55: 2230–2249

Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J Sel Top Signal Process, 2010, 4: 310–316

Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Analys, 2009, 26: 301–321

Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing. Appl Comput Harmon Analys, 2009, 27: 265–274

Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett, 2007, 14: 707–710

Rao B D, Kreutz-Delgado K. An affine scaling methodology for best basis selection. IEEE Trans Signal Process, 1999, 47: 187–200

Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2008. 3869–3872

Daubechies I, DeVore R, Fornasier M, et al. Iteratively reweighted least squares minimization for sparse recovery. Commun Pure Appl Math, 2010, 63: 1–38

Krishnan D, Fergus R. Fast image deconvolution using hyper-Laplacian priors. In: Advances in Neural Information Processing Systems (NIPS), 2009. 1033–1041

Xu Z B, Zhang H, Wang Y, et al. L 1/2 regularizer. Sci China Inf Sci, 2010, 53: 1159–1169

Wipf D P, Rao B D. Sparse Bayesian learning for basis selection. IEEE Trans Signal Process, 2004, 52: 2153–2164

Ji S, Xue Y, Carin L. Bayesian compressive sensing. IEEE Trans Signal Process, 2008, 56: 2346–2356

Ji S, Dunson D, Carin L. Multitask compressive sensing. IEEE Trans Signal Process, 2009, 57: 92–106

Babacan S D, Mancera L, Molina R, et al. Non-convex priors in Bayesian compressed sensing. In: Proc of 17th European Signal Processing Conference (EUSIPCO), Glasgow, 2009

Yoon Y S, Amin M G. Compressed sensing technique for high-resolution radar imaging. In: Proc SPIE, 2008. 6968

Stojanovic I, Karl W C, Çetin M. Compressed sensing of monostatic and multistatic SAR. In: Proc SPIE, 2009. 7337

Huang Q, Qu L, Wu B, et al. UWB through-wall imaging based on compressive sensing. IEEE Trans Geosci Remote Sens, 2010, 48: 1408–1415

Jiang C L, Jiang H, Zhang B C, et al. SNR analysis for SAR imaging from raw data via compressed sensing. In: Proc of European Conference on Synthetic Aperture Radar (EUSAR), Nuremberg, 2012

Austin C D, Ertin E, Moses R L. Sparse Multipass 3D SAR imaging: applications to the GOTCHA data set. In: Proc SPIE, 2009. 7337

Zhang L, Xing M, Qiu C W, et al. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing. IEEE Trans Geosci Remote Sens, 2010. 48,10: 3824–3838

Xie X C, Zhang Y H. High-resolution imaging of moving train by ground-based radar with compressive sensing. Electron Lett, 2010, 46: 529–531

Alonso M T, López-Dekker P, Mallorqui J J. A novel strategy for radar imaging based on compressive sensing. IEEE Trans Geosci Remote Sens, 2010, 48: 4285–4295

Wu Y R, Xu Z B, Hong W, et al. Sparse SAR Imaging Algorithm based on SAR Raw Data Simulator (in Chinese). China Patent, 201110182202.9. 2012

Andrecut M. Fast GPU implementation of sparse signal recovery from random projections. ArXiv: 08091833, 2008. http://arxiv.org/pdf/0809.1833

Borghi A, Darbon J, Peyronnet S, et al. A Simple Compressive Sensing Algorithm for Parallel Many-Core Architectures. Technical Report. 2008. http://www-micrel.deis.unibo.it/benini/files/MD/cam08-64.pdf

Liu B, Zou Y M, Ying L. SparseSENSE: application of compressed sensing in parallel MRI. In: Proc of International Conference on Information Technology and Applications in Biomedicine (ITAB), Shenzhen, 2008. 127–130

Chang C H, Ji J. Compressed sensing MRI with multichannel data using multicore processors. Magn Reson Med, 2010, 64: 1135–1139

Tropp J A. Greed is good: Algorithmic results for sparse approximation. IEEE Trans Inf Theory, 2004, 50: 2231–2242

Ben-Haim Z, Eldar Y C, Elad M. Coherence-based performance guarantees for estimating a sparse vector under random noise. IEEE Trans Signal Process, 2010, 58: 5030–5043

Stanley H E. Introduction to Phase Transitions and Critical Phenomena. Oxford: Oxford Press, 1987

Donoho D, Stodden V. Breakdown point of model selection when the number of variables exceeds the number of observations. In: Proc of IEEE International Joint Conference on Neural Network (IJCNN), Vancouver, 2006. 1916–1921

Donoho D L, Tsaig Y. Fast Solution of L1-Norm Minimization Problems When the Solution May Be Sparse. Technical Report. Dept. of Statistics, Stanford University, 2006. http://www-dsp.rice.edu/files/cs/FastL1.pdf

Donoho D, Tanner J. Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philosoph Trans Royal Soc A Math Phys Engin Sci, 2009, 367: 4273–4293

Donoho D, Jin J. Feature selection by higher criticism thresholding achieves the optimal phase diagram. Philosoph Trans Royal Soc A Math Phys Engin Sci, 2009, 367: 4449–4470

Zhu X X, Bamler R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR. IEEE Trans Geosci Remote Sens, 2012, 50: 247–258

Herman M A, Strohmer T. High-resolution radar via compressed sensing. IEEE Trans Signal Process, 2009, 57: 2275–2284

Jiang H. Study on Processing Algorithm and Analysis of Imaging Performance of Compressed Sensing Radar via Information Theory. Master’s thesis. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2011

Jiang C L, Zhang B C, Zhang Z, et al. Experimental results and analysis of Sparse Microwave Imaging from spaceborne radar raw data. Sci China Inf Sci, 2012, 55: 1801–1815

Zhang B C, Hong W, Wu Y R, et al. A Radar Imaging Azimuth Ambiguity Reducing Method Based on ℓ q Regularization (in Chinese). China Patent, 201110310655.5. 2012.

Lin Y G, Zhang B C, Jiang H, et al. Multi-channel SAR imaging based on distributed compressive sensing. Sci China Inf Sci, 2012, 55: 245–259

Lin Y G, Zhang B C, Hong W, et al. Along-track interferometric SAR imaging based on distributed compressed sensing. Electron Lett, 2010, 46: 85–860

Lin Y G. Study on Multi-channel SAR Imaging Based on Compressive Sensing. Ph.D. thesis. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2011

Farhat N H, Werner C L, Chu T H. Prospects for three-dimensional projective and tomographic imaging radar networks. Radio Sci, 1984, 19: 1347–1355

Mahafza B R, Sajjadi M. Three-dimensional SAR imaging using linear array in transverse motion. IEEE Trans Aerosp Electron Syst, 1996, 32: 499–510

Reigber A, Moreira A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans Geosci Remote Sens, 2000, 38: 2142–2152

Zhu X X, Bamler R. Tomographic SAR inversion by L1-norm regularization — the compressive sensing approach. IEEE Trans Geosci Remote Sens, 2010, 48: 3839–3846

Baselice F, Ferraioli G, Pascazio V. Three dimensional reconstruction using COSMO-SkyMed high-resolution data. In: Proceedings of Microwaves, Radar and Remote Sensing Symposium (MRRS), 2011. 161–164

Budillon A, Evangelista A, Schirinzi G. Three-dimensional SAR focusing from multipass signals using compressive sampling. IEEE Trans Geosci Remote Sens, 2011, 49: 488–499

Zhu X X, Bamler R. Very High Resolution SAR tomography via compressive sensing. In: Proc of Fringe Workshop Advances in the Science and Applications of SAR Interferometry, Frascati, 2009

Zhu X X, Bamler R. Compressive sensing for high resolution differential SAR tomography-the SL1MMER algorithm. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, 2010. 17–20

Zhu X X, Bamler R. Within the resolution cell: Super-resolution in tomographic SAR imaging. In: Proc of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, 2011. 2401–2404

Zhu X X, Bamler R. Demonstration of Super-Resolution for Tomographic SAR Imaging in Urban Environment. IEEE Trans Geosci Remote Sens, 2012, in press

Khomchuk P, Bilik I, Kasilingam D. Compressive sensing-based SAR tomography. In: Proc of IEEE Radar Conference, Washington, 2010. 354–358

Tan W X. Study on Theory and Algorithms for Three-Dimensional Synthetic Aperture Radar Imaging. Ph.D. thesis. Beijing: Institute of Electronics, Chinese Academy of Science, 2009

Wehner D R. High Resolution Radar. Norwood: Artech House Inc, 1987

Zhang L, Xing M, Qiu C W, et al. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling. IEEE Geosci Remote Sens Lett, 2009, 6: 567–71

Wang H, Quan Y, Xing M, et al. ISAR imaging via sparse probing frequencies. IEEE Geosci Remote Sens Lett, 2011, 8: 451–455

Zhang L, Qiao Z, Xing M, et al. High-resolution ISAR imaging with sparse stepped-frequency waveforms. IEEE Trans Geosci Remote Sens, 2011, 49: 4630–4651

Lei Z, Qiao Z, Xing M, et al. High resolution ISAR imaging by exploiting sparse apertures. IEEE Trans Anten Propag, 2011, 60: 997–1008

Zhu F, Zhang Q, Xiang Y, et al. Compressive Sensing in ISAR spectrogram data transmission. In: Proc of Asian-Pacific Conference on Synthetic Aperture Radar (APSAR), Xi’an, 2009. 89–92

Zhu F, Zhang Q, Lei Q, et al. Reconstruction of moving target’s HRRP using sparse frequency-stepped chirp signal. IEEE Sensors J, 2011, 11: 2327–2334

Ye F, Liang D, Zhu J. ISAR enhancement technology based on compressed sensing. Electron Lett, 2011, 47: 620–621

Rao W, Li G, Wang X, et al. ISAR imaging of uniformly rotating targets via parametric weighted L1 minimization. In: Proc of Asian-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, 2011

Daniels D J. Surface-penetrating radar. Electron Commun Engin J, 1996, 8: 165–182

Daniels D J. Ground Penetrating Radar. Herts: The Institution of Engineering and Technology, 2004

Gurbuz A C, McClellan J H, Scott W R. Compressive sensing for subsurface imaging using ground penetrating radar. Signal Process, 2009, 89: 1959–1972

Feng X, Sato M. Pre-stack migration applied to GPR for landmine detection. Inverse Problem, 2004, 20: S99

Stolt R H. Migration by Fourier transform. Geophysics, 1978, 43: 23–48

Gurbuz A C, McClellan J H, Scott W R. Compressive sensing for GPR imaging. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2007. 2223–2227

Gurbuz A C, McClellan J H, Scott W R. GPR imaging using compressed measurements. In: Proc of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008. 11–13

Suksmono A B, Bharata E, Lestari A A, et al. A compressive SFCW-GPR system. In: Proc of 12th Int Conf on Ground Penet Radar, Birmingham, 2008. 16–19

Suksmono A B, Bharata E, Lestari A A, et al. Compressive stepped-frequency continuous-wave ground-penetrating radar. IEEE Geosci Remote Sens Lett, 2010, 7: 665–669

Gurbuz A C, McClellan J H, Scott W R. A compressive sensing data acquisition and imaging method for stepped frequency GPRs. IEEE Trans Signal Process, 2009, 57: 2640–2650

Soldovieri F, Solimene R, Ahmad F. A fast data acquisition and processing scheme for through-the-wall radar imaging. In: Proc SPIE, 2011. 8021

Varshney K R, CII J W, et al. Joint image formation and anisotropy characterization in wide-angle SAR. In: Proc SPIE, 2006. 6237

Stojanovic I, C Proceedings of SPIE, 2008. 6970

Soumekh M. Reconnaissance with slant plane circular SAR imaging. IEEE Trans Image Process, 1996, 5: 1252–1265

Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radar imaging. Proc IEEE, 2010, 98: 1006–1020

Lin Y, Hong W, Tan W X, et al. Compressed sensing technique for circular SAR imaging. In: Proc of IET International Radar Conference, Guilin, 2009

Lin Y. Study on Algorithms for Circular Synthetic Aperture Radar Imaging. Ph.D. thesis. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2011

Fishler E, Haimovich A, Blum R, et al. MIMO radar: An idea whose time has come. In: Proc of IEEE Radar Conference, Philadelphia, 2004. 71–78

Li J, Stoica P. MIMO Radar Signal Processing. Hoboken: Wiley, 2009

Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2003. 54–59

Chen C Y, Vaidyanathan P P. Compressed sensing in MIMO radar. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2008. 41–44

Strohmer T, Friedlander B. Compressed sensing for MIMO radar-algorithms and performance. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2009. 464–468

Petropulu A P, Yu Y, Poor H V. Distributed MIMO radar using compressive sampling. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2008. 203–207

Yu Y, Petropulu A, Poor H V. MIMO radar using compressive sampling. IEEE J Sel Top Signal Process, 2010, 4: 146–163

Yu Y, Petropulu A, Poor H. Measurement matrix design for compressive sensing based MIMO radar. IEEE Trans Signal Process, 2011, 59: 5338–5352

Gogineni S, Nehorai A. Target estimation using sparse modeling for distributed MIMO radar. IEEE Trans Signal Process, 2011, 59: 5315–5325

Tan X, Roberts W, Li J, et al. Sparse learning via iterative minimization with application to MIMO radar imaging. IEEE Trans Signal Process, 2011, 59: 1088–1101

Berger C R, Zhou S, Willett P. Signal extraction using compressed sensing for passive radar with OFDM signals. In: Proc of 11th International Conference on Information Fusion, Cologne, 2008

Xu H, He X, Yin Z, et al. Compressive sensing MIMO radar imaging based on inverse scattering model. In: Proc of IEEE International Conference on Signal Processing (ICSP), Beijing, 2010. 1999–2002

Wang J, Li G, Zhang H, et al. SAR Imaging of Moving Targets via Compressive Sensing. ArXiv: 11041074, 2011. http://arxiv.org/pdf/1104.1074

Khwaja A S, Ma J. Applications of compressed sensing for SAR moving-target velocity estimation and image compression. IEEE Trans Instrum Meas, 2011, 60: 2848–2860

Stojanovic I, Karl W C. Imaging of moving targets with multi-static SAR using an overcomplete dictionary. IEEE J Sel Top Signal Process, 2010, 4: 164–176

Ferrara M, Jackson J, Stuff M. Three-dimensional sparse-aperture moving-target imaging. In: Proceedings of SPIE, 2008. 6970

Benz U, Strodl K, Moreira A. A comparison of several algorithms for SAR raw data compression. IEEE Trans Geosci Remote Sens, 1995, 33: 1266–1276

Kwok R, Johnson W. Block adaptive quantization of Magellan SAR data. IEEE Trans Geosci Remote Sens, 1989, 27: 375–383

Bhattacharya S, Blumensath T, Mulgrew B, et al. Fast encoding of synthetic aperture radar raw data using compressed sensing. In: Proc of 14th IEEE Workshop on Statistical Signal Processing, Madison, 2007. 448–452

Bhattacharya S, Blumensath T, Mulgrew B, et al. Synthetic aperture radar raw data encoding using compressed sensing. In: Proc of IEEE Radar Conference, Rome, 2008

Sarvotham S, Baron D, Baraniuk R G. Measurements vs. bits: Compressed sensing meets information theory. In: Proc of 44th Allerton Conf Comm Ctrl Computing, Monticello, 2006

Wainwright M J. Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting. IEEE Trans Inf Theory, 2009, 55: 5728–5741

Aeron S, Saligrama V, Zhao M. Information theoretic bounds for compressed sensing. IEEE Trans Inf Theory, 2010, 56: 5111–5130