Sparse graphical models for exploring gene expression data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Al-azzeh, 2000, Transcription factor GATA-6 activates expression of gastroprotective trefoil genes TFF1 and TFF2, Biochem. Biophys. Acta, 1490, 324
Anderson, 1997, A characterization of Markov equivalence classes for acyclic digraphs, Ann. Statist., 25, 505, 10.1214/aos/1031833662
Barkhem, 2002, Gene expression in HepG2 cells: complex regulation through crosstalk between the estrogen receptor alpha, an estrogen-response element, and the activator protein 1 response element, Molecular Pharmacol., 61, 1273, 10.1124/mol.61.6.1273
Beck, 1999, Hepatocyte nuclear factor 3 (winged helix domain) activates trefoil factor gene TFF1 through a binding motif adjacent to the TATA box, DNA Cell Biol., 18, 157, 10.1089/104454999315547
Dawid, 1981, Some matrix-variate distribution theory: notational considerations and a Bayesian application, Biometrika, 68, 265, 10.1093/biomet/68.1.265
Dawid, 1993, Hyper Markov laws in the statistical analysis of decomposable graphical models, Ann. Statist., 3, 1272
Dyson, 1998, The regulation of E2F by pRB family proteins, Gene. Dev., 12, 2245, 10.1101/gad.12.15.2245
Geiger, 2002, Parameter priors for directed acyclic graphical models and the characterization of several probability distributions, Ann. Statist., 5, 1412
P. Giudici, Learning in graphical Gaussian models, in: J.M. Bernardo, J. Berger, A. Dawid, A. Smith (Eds.), Bayesian Statistics, Vol. 5, Oxford University Press, Oxford, 1994, pp. 621–628.
GraphViz, Open source graph drawing software, AT&T Research Labs., http://www.research.att.com/sw/tools/graphviz/.
Heckerman, 2000, Dependency networks for inference, collaborative filtering, and data visualization, J. Mach. Learning Res., 1, 49
Hegde, 1998, c-Maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation, Molecular Cell. Biol., 18, 2729, 10.1128/MCB.18.5.2729
Henry, 1988, Measurement of oestrogen receptor mRNA levels in human breast tumours, J. Breast Cancer, 58, 600
R. Hofmann, V. Tresp, Nonlinear Markov networks for continuous variables, in: M.I. Jordan, M.J. Kearns, S.A. Solla (Eds.), Advances in Neural Information Processing Systems, Vol. 10, Proceedings of the 1997 Conference, MIT Press, Cambridge, MA, 1998, pp. 521–527.
Huang, 2003, Gene expression predictors of breast cancer outcomes, Lancet, 361, 1590, 10.1016/S0140-6736(03)13308-9
E. Huang, M. West, J.R. Nevins, Gene expression profiles and predicting clinical characteristics of breast cancer, Recent Progr. Hormone Res. (2003) 55–73.
Knight, 1977, Estrogen receptor as an independent prognostic factor for early recurrence in breast cancer, Cancer Res., 37, 4669
Lauritzen, 1996
May, 1988, Identification and characterization of estrogen-regulated RNAs in human breast cancer cells, J. Biol. Chem., 263, 12901, 10.1016/S0021-9258(18)37646-4
Nevins, 1998, Towards an understanding of the functional complexity of the E2F and retinoblastoma families, Cell Growth Differ., 9, 585
Pichon, 1996, Prognostic value of steroid receptors after long term follow up of 2257 operable breast cancers, British J. Cancer, 73, 1545, 10.1038/bjc.1996.291
Reiss, 1991, The protooncogene c-Myb increases the expression of insulin-like growth factor 1 and insulin-like growth factor 1 receptor messenger RNAs by a transcriptional mechanism, Cancer Res., 51, 5997
A. Roverato, G. Consonni, Compatible prior distributions for DAG models, DIMACS Technical Report 2002-17, 2002.
Sahlin, 1994, Androgen regulation of the insulin-like growth factorI and the estrogen receptor in rat uterus and liver, J. Steroid Biochem. Molecular Biol., 51, 57, 10.1016/0960-0760(94)90115-5
Schuur, 2001, Ligand-dependent interaction of estrogen receptor alpha with members of the forkhead transcription factor family, J. Biol. Chem., 276, 33554, 10.1074/jbc.M105555200
Spiegelhalter, 1990, Sequential updating of conditional probabilities on directed graphical structures, Networks, 20, 579, 10.1002/net.3230200507
M. West, Bayesian factor regression models in the “large p, small n” paradigm, in: J.M. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith, M. West (Eds.), Bayesian Statistics, Vol. 7, Oxford University Press, Oxford, 2003, pp. 723–732.
M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, M.J.R., J.R. Nevins, Predicting the clinical status of human breast cancer using gene expression profiles, Proc. Nat. Acad. Sci. 98 (2001) 11462–11467.
Zellner, 1971