Sparse code multiple access on the generalized frequency division multiplexing

Guilherme Pedro Aquino1, Luciano Leonel Mendes1
1Radiocommunication Reference Center, Instituto Nacional de Telecomunicações, Santa Rita do Sapucaí, Brazil

Tóm tắt

Abstract Recent advances in the communication systems culminated in a new class of multiple access schemes, named non-orthogonal multiple access (NOMA), where the main goal is to increase the spectrum efficiency by overlapping data from different users in a single time-frequency resource used by the physical layer. NOMA receivers can resolve the interference among data symbols from different users, increasing the overall system spectrum efficiency without introducing symbol error rate (SER) performance loss, which makes this class of multiple access techniques interesting for future mobile communication systems. This paper analyzes one promising NOMA technique, called sparse code multiple access (SCMA), where C users can share U<C time-frequency resources from the physical layer. Initially, the SCMA and orthogonal frequency division multiplexing (OFDM) integration is considered, defining a benchmark for the overall SER performance for the multiple access technique. Furthermore, this paper proposes the SCMA and generalized frequency division multiplexing (GFDM) integration. Since GFDM is a highly flexible non-orthogonal waveform that can mimic several other waveforms as corner cases, it is an interesting candidate for future wireless communication systems. This paper proposes two approaches for combining SCMA and GFDM. The first one combines a soft equalizer, called block expectation propagation (BEP), and a multi-user detection (MUD) scheme based on the sum-product algorithm (SPA). This approach achieves the best SER performance, but with the significant increment of the complexity at the receiver. In the second approach, BEP is integrated with a simplified MUD, which is an original contribution of this paper, aiming for reducing the receiver’s complexity at the cost of SER performance loss. The solutions proposed in this paper show that SCMA-GFDM can be an interesting solution for future mobile networks.

Từ khóa


Tài liệu tham khảo

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. T. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, F. Wiedmann, 5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag.52(2), 97–105 (2014). https://doi.org/10.1109/MCOM.2014.6736749 .

F. Javed, M. K. Afzal, M. Sharif, B. Kim, Internet of Things (IoT) operating systems support, networking technologies, applications, and challenges: a comparative review. IEEE Commun. Surv. Tutor.20(3), 2062–2100 (2018). https://doi.org/10.1109/COMST.2018.2817685 .

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, P. Popovski, Five disruptive technology directions for 5G. IEEE Commun. Mag.52(2), 74–80 (2014). https://doi.org/10.1109/MCOM.2014.6736746 .

A. Gupta, R. K. Jha, A survey of 5G network: architecture and emerging technologies. IEEE Access. 3:, 1206–1232 (2015). https://doi.org/10.1109/ACCESS.2015.2461602 .

A. Ghosh, A. Maeder, M. Baker, D. Chandramouli, 5G evolution: a view on 5G cellular technology beyond 3GPP release 15. IEEE Access. 7:, 127639–127651 (2019). https://doi.org/10.1109/ACCESS.2019.2939938 .

ETSI TS 123 501, 5G: system architecture for the 5G system. 3GPP TS 23.501 version 15.2.0 Release 15 (2018). https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.02.00_60/ts_123501v150200p.pdf .

D. Zhang, M. Matthé, L. L. Mendes, G. Fettweis, A study on the link level performance of advanced multicarrier waveforms under MIMO wireless communication channels. IEEE Trans. Wirel. Commun.16(4), 2350–2365 (2017). https://doi.org/10.1109/TWC.2017.2664820 .

H. Viswanathan, P. E. Mogensen, Communications in the 6G era. IEEE Access. 8:, 57063–57074 (2020). https://doi.org/10.1109/ACCESS.2020.2981745 .

P. Cheng, M. Tao, Y. Xiao, W. Zhang, V-OFDM: on performance limits over multi-path Rayleigh fading channels. IEEE Trans. Commun.59(7), 1878–1892 (2011). https://doi.org/10.1109/TCOMM.2011.051711.100223 .

P. Weitkemper, J. Bazzi, K. Kusume, A. Benjebbour, Y. Kishiyama, On regular resource grid for filtered OFDM. IEEE Commun. Lett.20(12), 2486–2489 (2016). https://doi.org/10.1109/LCOMM.2016.2572183 .

L. Zhang, P. Xiao, A. Zafar, A. ul Quddus, R. Tafazolli, FBMC system: an insight into doubly dispersive channel impact. IEEE Trans. Veh. Technol.66(5), 3942–3956 (2017). https://doi.org/10.1109/TVT.2016.2602096 .

N. Michailow, G. Fettweis, in Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems. Low peak-to-average power ratio for next generation cellular systems with generalized frequency division multiplexing (IEEENaha, 2013), pp. 651–655. https://doi.org/10.1109/ISPACS.2013.6704629 .

I. B. Franco de Almeida, L. Leonel Mendes, in 2018 IEEE 5G World Forum (5GWF). Linear GFDM: a low out-of-band emission configuration for 5G air interface, (2018), pp. 311–316. https://doi.org/10.1109/5GWF.2018.8516993 .

M. Matthé, D. Zhang, G. Fettweis, Low-complexity iterative MMSE-PIC detection for MIMO-GFDM. IEEE Trans. Commun.66(4), 1467–1480 (2018). https://doi.org/10.1109/TCOMM.2017.2782339 .

L. Zhu, Z. Xiao, X. Xia, D. Oliver Wu, Millimeter-wave communications with non-orthogonal multiple access for B5G/6G. IEEE Access. 7:, 116123–116132 (2019). https://doi.org/10.1109/ACCESS.2019.2935169 .

L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, Z. Wang, Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag.53(9), 74–81 (2015). https://doi.org/10.1109/MCOM.2015.7263349 .

M. Cheng, Y. Wu, Y. Chen, in Proceedings of the International Conference on Wireless Communications Signal Processing. Capacity analysis for non-orthogonal overloading transmissions under constellation constraints (IEEENanjing, 2015), pp. 1–5. https://doi.org/10.1109/WCSP.2015.7341294 .

B. Wang, K. Wang, Z. Lu, T. Xie, J. Quan, in Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Comparison study of non-orthogonal multiple access schemes for 5G (IEEEGhent, 2015), pp. 1–5. https://doi.org/10.1109/BMSB.2015.7177186 .

S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun, K. Niu, Pattern division multiple access (PDMA) - a novel non-orthogonal multiple access for 5G radio networks. IEEE Trans. Veh. Technol.66(4), 3185–3196 (2016). https://doi.org/10.1109/TVT.2016.2596438 .

Y. Chen, F. Schaich, T. Wild, in Proceedings of the IEEE 79th Vehicular Technology Conference. Multiple access and waveforms for 5G: IDMA and universal filtered multi-carrier (IEEESeoul, 2014), pp. 1–5. https://doi.org/10.1109/VTCSpring.2014.7022995 .

Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, J. Xu, in Proceedings of the IEEE Vehicular Technology Conference. Multi-user shared access for Internet of things (IEEENanjing, 2016), pp. 1–5. https://doi.org/10.1109/VTCSpring.2016.7504361 .

D. Fang, Y. Huang, Z. Ding, G. Geraci, S. Shieh, H. Claussen, in 2016 IEEE Global Communications Conference (GLOBECOM). Lattice partition multiple access: a new method of downlink non-orthogonal multiuser transmissions, (2016), pp. 1–6. https://doi.org/10.1109/GLOCOM.2016.7841947 .

H. Nikopour, H. Baligh, in Proceedings of the IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications. Sparse code multiple access (IEEELondon, 2013), pp. 332–336. https://doi.org/10.1109/PIMRC.2013.6666156 .

F. R. Kschischang, B. J. Frey, H. A. Loeliger, Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory. 47(2), 498–519 (2001). https://doi.org/10.1109/18.910572 .

Y. Chunlin, Y. Zhifeng, L. Weimin, Y. Yifei, Non-orthogonal multiple access schemes for 5G. ZTE Communications. 14(4), 11–16 (2016).

Y. Han, S. Zhang, W. Zhou, Q. Ling, in Proceedings of the International Conference on Wireless Communications Signal Processing. Enabling SCMA long codewords with a parallel SCMA coding scheme (IEEENanjing, 2015), pp. 1–6. https://doi.org/10.1109/WCSP.2015.7341085 .

M. Taherzadeh, H. Nikopour, A. Bayesteh, H. Baligh, in Proceedings of the IEEE 80th Vehicular Technology Conference. SCMA codebook design (IEEEVancouver, 2014), pp. 1–5. https://doi.org/10.1109/VTCFall.2014.6966170 .

J. Bao, Z. Ma, Z. Ding, G. K. Karagiannidis, Z. Zhu, On the design of multiuser codebooks for uplink SCMA systems. IEEE Commun. Lett.20(10), 1920–1923 (2016). https://doi.org/10.1109/LCOMM.2016.2596759 .

H. Nikopour, E. Yi, A. Bayesteh, K. Au, M. Hawryluck, H. Baligh, J. Ma, in Proceedings of the IEEE Global Communications Conference. SCMA for downlink multiple access of 5G wireless networks (IEEEAustin, 2014), pp. 3940–3945. https://doi.org/10.1109/GLOCOM.2014.7037423 .

L. Yang, Y. Liu, Y. Siu, Low complexity message passing algorithm for SCMA system. IEEE Commun. Lett.20(12), 2466–2469 (2016). https://doi.org/10.1109/LCOMM.2016.2609382 .

Y. Long, Z. Chen, Z. Guo, J. Fang, A novel HARQ scheme for SCMA systems. IEEE Wirel. Commun. Lett.5(5), 452–455 (2016). https://doi.org/10.1109/LWC.2016.2585110 .

L. Lu, Y. Chen, W. Guo, H. Yang, Y. Wu, S. Xing, Prototype for 5G new air interface technology SCMA and performance evaluation. China Commun.12:, 38–48 (2015). https://doi.org/10.1109/CC.2015.7386169 .

G. P. Aquino, L. Leonel Mendes, in Proceedings of the IEEE 5G World Forum. Sparse code multiple access applied in the generalized frequency division multiplexing (IEEESilicon Valley, 2018), pp. 49–54. https://doi.org/10.1109/5GWF.2018.8517096 .

I. Santos, J. J. Murillo-Fuentes, P. M. Olmos, in Proceedings of the European Signal Processing Conference. Block expectation propagation equalization for ISI channels (IEEENice, 2015), pp. 379–383. https://doi.org/10.1109/EUSIPCO.2015.7362409 .

S. Wu, Z. Ni, X. Meng, L. Kuang, Block expectation propagation for downlink channel estimation in massive MIMO systems. IEEE Commun. Lett.20(11), 2225–2228 (2016). https://doi.org/10.1109/LCOMM.2016.2598810 .

I. Santos, J. J. Murillo-Fuentes, R. Boloix-Tortosa, E. Arias-de-Reyna, P. M. Olmos, Expectation propagation as turbo equalizer in ISI channels. IEEE Trans. Commun.65(1), 360–370 (2017). https://doi.org/10.1109/TCOMM.2016.2616141 .

A. P. Kannu, P. Schniter, Design and analysis of MMSE pilot-aided cyclic-prefixed block transmissions for doubly selective channels. IEEE Trans. Signal Process.56(3), 1148–1160 (2008). https://doi.org/10.1109/TSP.2007.908969 .

J. van de Beek, B. M. Popovic, in Proceedings of the IEEE Global Telecommunications Conference. Multiple access with low-density signatures (IEEEHonolulu, 2009), pp. 1–6. https://doi.org/10.1109/GLOCOM.2009.5425243 .

Y. Wu, S. Zhang, Y. Chen, in Proceedings of the IEEE International Conference on Communications. Iterative multiuser receiver in sparse code multiple access systems (IEEELondon, 2015), pp. 2918–2923. https://doi.org/10.1109/ICC.2015.7248770 .

Z. Na, Z. Pan, M. Xiong, X. Liu, W. Lu, Y. Wang, L. Fan, Turbo receiver channel estimation for GFDM-based cognitive radio networks. IEEE Access. 6:, 9926–9935 (2018). https://doi.org/10.1109/ACCESS.2018.2803742 .

I. S. Gaspar, L. L. Mendes, N. Michailow, G. Fettweis, A synchronization technique for generalized frequency division multiplexing. EURASIP J. Adv. Signal Process.2014(1), 67 (2014). https://doi.org/10.1186/1687-6180-2014-67 .

D. Zhang, L. L. Mendes, M. Matthé, I. S. Gaspar, N. Michailow, G. P. Fettweis, Expectation propagation for near-optimum detection of MIMO-GFDM signals. IEEE Trans. Wirel. Commun.15(2), 1045–1062 (2016). https://doi.org/10.1109/TWC.2015.2482479 .

T. P. Minka, A family of algorithms for approximate Bayesian inference. PhD thesis (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, Cambridge, 2001). AAI0803033.

L. Bahl, J. Cocke, F. Jelinek, J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory. 20(2), 284–287 (1974). https://doi.org/10.1109/TIT.1974.1055186 .

N. Michailow, M. Matthé, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, G. Fettweis, Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Trans. Commun.62(9), 3045–3061 (2014). https://doi.org/10.1109/TCOMM.2014.2345566 .