Sparse FGLM algorithms
Tài liệu tham khảo
Bardet, 2004
Bardet, 2015, On the complexity of the F5 Gröbner basis algorithm, J. Symb. Comput., 70, 49, 10.1016/j.jsc.2014.09.025
Basiri, 2003, Changing the ordering of Gröbner bases with LLL: case of two variables, 23
Bayer, 1987, A theorem on refining division orders by the reverse lexicographic order, Duke Math. J., 55, 321, 10.1215/S0012-7094-87-05517-7
Becker, 1994, The shape of the shape lemma, 129
Becker, 1993, Gröbner Bases: a Computational Approach to Commutative Algebra
Berthomieu, 2015, Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences, 61
Bras-Amorós, 2006, The correction capability of the Berlekamp–Massey–Sakata algorithm with majority voting, Appl. Algebra Eng. Commun. Comput., 17, 315, 10.1007/s00200-006-0015-8
Brent, 1980, Fast solution of Toeplitz systems of equations and computation of Padé approximants, J. Algorithms, 1, 259, 10.1016/0196-6774(80)90013-9
Buchberger, 1985, Gröbner bases: an algorithmic method in polynomial ideal theory, 184
Buchmann, 2006, A zero-dimensional Gröbner basis for AES-128, 78
Collart, 1997, Converting bases with the Gröbner walk, J. Symb. Comput., 24, 465, 10.1006/jsco.1996.0145
Cox, 1998
Dahan, 2008, Change of order for regular chains in positive dimension, Theor. Comput. Sci., 392, 37, 10.1016/j.tcs.2007.10.003
Eisenbud, 1995, Commutative Algebra: with a View Toward Algebraic Geometry, vol. 150
Faugère, 1999, A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra, 139, 61, 10.1016/S0022-4049(99)00005-5
Faugère, 2002, A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), 75
Faugère, 2013, Using symmetries in the index calculus for elliptic curves discrete logarithm, J. Cryptol., 27, 595, 10.1007/s00145-013-9158-5
Faugère, 2014, Sub-cubic change of ordering for Gröbner basis: a probabilistic approach, 170
Faugère, 1993, Efficient computation of zero-dimensional Gröbner bases by change of ordering, J. Symb. Comput., 16, 329, 10.1006/jsco.1993.1051
Faugère, 2011, Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices, 115
Faugère, 2010, Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology, 257
Faugère, 2012, Critical points and Gröbner bases: the unmixed case, 162
Feng, 1993, Decoding algebraic-geometric codes up to the designed minimum distance, IEEE Trans. Inf. Theory, 39, 37, 10.1109/18.179340
Galligo, 1974
Høholdt, 1998
Jonckheere, 1989, A simple Hankel interpretation of the Berlekamp–Massey algorithm, Linear Algebra Appl., 125, 65, 10.1016/0024-3795(89)90032-3
Kaltofen, 1991, Processor efficient parallel solution of linear systems over an abstract field, 180
Lasserre, 2013, Moment matrices, border bases and real radical computation, J. Symb. Comput., 51, 63, 10.1016/j.jsc.2012.03.007
Lazard, 1983, Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations, 146
Lazard, 1992, Solving zero-dimensional algebraic systems, J. Symb. Comput., 13, 117, 10.1016/S0747-7171(08)80086-7
Loustaunau, 1997, On the decoding of cyclic codes using Gröbner bases, Appl. Algebra Eng. Commun. Comput., 8, 469, 10.1007/s002000050084
Miller, 2005, Combinatorial Commutative Algebra, vol. 227
Morgan, 1987
Mou, 2012, Design of termination criterion of BMS algorithm for lexicographical ordering, J. Comput. Appl., 32, 2977
Pardue, 1994
Pascal, 2006, Change of order for bivariate triangular sets, 277
Rouillier, 1999, Solving zero-dimensional systems through the rational univariate representation, Appl. Algebra Eng. Commun. Comput., 9, 433, 10.1007/s002000050114
Saints, 2002, Algebraic-geometric codes and multidimensional cyclic codes: a unified theory and algorithms for decoding using Gröbner bases, IEEE Trans. Inf. Theory, 41, 1733, 10.1109/18.476246
Sakata, 1988, Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array, J. Symb. Comput., 5, 321, 10.1016/S0747-7171(88)80033-6
Sakata, 1990, Extension of the Berlekamp–Massey algorithm to N dimensions, Inf. Comput., 84, 207, 10.1016/0890-5401(90)90039-K
Von zur Gathen, 2003
Wang, 2001
Wiedemann, 1986, Solving sparse linear equations over finite fields, IEEE Trans. Inf. Theory, 32, 54, 10.1109/TIT.1986.1057137