Spark plasma sintering of ZrB2- and HfB2-based Ultra High Temperature Ceramics prepared by SHS

Roberta Licheri1, Roberto Orrù1, Clara Musa1, Antonio Mario Locci1, Giacomo Cao1
1Dipartimento di Ingegneria Chimica e Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), Unitá di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unitá di Ricerca del Consorzio Nazionale delle Ricerche (CNR) — Dipartimento di Energia e Trasporti, Universitá degli Studi di Cagliari, Piazza D’Armi, 09123, Cagliari, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Upadhya, K., Yang, J.M., and Hoffmann, W.P., Materials for Ultrahigh Temperature Structural Applications, Am. Ceram. Soc. Bull., 1997, vol. 58, pp. 51–56.

Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., Refractory Diborides of Zirconium and Hafnium, J. Am. Ceram. Soc., 2007, vol. 90, pp. 1347–1364.

Levine, S.R., Opila, E.J., Halbig, M.C., Kiser, J.D., Singh, M., and Salem, J.A., Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use, J. Eur. Ceram. Soc., 2003, vol. 22, pp. 2757–2767.

Rapp, R., Materials for Extreme Environments, Mater. Today, 2006, vol. 9, no. 5, p. 6.

Tripp, W.C., Davis, H.H., and Graham, H.C., Effect of a SiC Addition on the Oxidation of ZrB2, Am. Ceram. Soc. Bull., 1973, vol. 52, no. 8, pp. 612–616.

Monteverde, F. and Bellosi, A., The Resistance to Oxidation of an HfB2-SiC Composite, J. Eur. Ceram. Soc., 2005, vol. 25, no. 7, pp. 1025–1031.

Monteverde, F. and Scatteia, L., Resistance to Thermal Shock and to Oxidation of Metal Diborides-SiC Ceramics for Aerospace Application, J. Am. Ceram. Soc., 2007, vol. 90, no. 4, pp. 1130–1138.

Fahrenholtz, W.G., Hilmas, G.E., Chamberlain, A.L., Zimmermann, J.W., and Fahrenholtz, B., Processing and Characterization of ZrB2-Based Ultra-High Temperature Monolithic and Fibrous Monolithic Ceramics., J. Mater. Sci., 2004, vol. 39, pp. 5951–5957.

Marschall, J., Erlich, D.C., Manning, H., Duppler, W., Ellerby, D., and Gasch, M., Microhardness and High-Velocity Impact Resistance of HfB2/SiC and ZrB2/SiC Composites, J. Mater. Sci., 2004, vol. 39, pp. 5959–5968.

Opeka, M.M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A., and Causey, S.J., Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 2404–2414.

Zhang, G.-J., Deng, Z.-Y., Kondo, N., Yang, J.-F., and Ohji, T., Reactive Hot Pressing of ZrB2-SiC Composites, J. Am. Ceram. Soc., 2000, vol. 83, no. 9, pp. 2330–2332.

Monteverde, F., Progress in the Fabrication of Ultra-High-Temperature Ceramics: In Situ Synthesis, Microstructure, and Properties of a Reactive Hot-Pressed HfB2-SiC Composite, Compos. Sci. Technol., 2005, vol. 65, nos. 11–12, pp. 1869–1879.

Monteverde, F. and Bellosi, A., Oxidation of ZrB2-Based Ceramics in Dry Air, J. Electrochem. Soc., 2003, vol. 150, no. 11, pp. B552–B559.

Monteverde, F. and Bellosi, A., Efficacy of HfN as Sintering Aid in the Manufacture of Ultrahigh-Temperature Metal Diborides-Matrix Ceramics, J. Mater. Res., 2004, vol. 19, no. 12, pp. 3576–3585.

Balbo, A. and Sciti, D., Spark Plasma Sintering and Hot Pressing of ZrB2-MoSi2 under High-Temperature Ceramics, Mater. Sci. Eng. A, 2008, vol. 475, pp. 108–112.

Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M., The Effect of Electric Field and Pressure on the Synthesis and Consolidation of Materials: A Review of the Spark Plasma Sintering Method, J. Mater. Sci., 2006, vol. 41, no. 3, pp. 763–777.

Orrù, R., Licheri, R., Locci, A.M., Cincotti, A., and Cao, G., Consolidation/Synthesis of Materials by Electric Current Activated/Assisted Sintering, Mater. Sci. Eng. R, 2009, vol. 63, nos. 4–6, pp. 227–287..

Medri, V., Monteverde, F., Balbo, A., and Bellosi, A., Comparison of ZrB2-ZrC-SiC Composites Fabricated by Spark Plasma Sintering and Hot Pressing, Adv. Eng. Mater., 2005, vol. 7, no. 3, pp. 159–163.

Anselmi-Tamburini, U., Kodera, Y., Gasch, M., Unuvar, C., Munir, Z.A., Ohyanagi, M., and Johnson S.M., Synthesis and Characterization of Dense Ultra-High Temperature Thermal Protection Materials Produced by Field Activation through Spark Plasma Sintering (SPS): I. Hafnium Diboride, J. Mater. Sci., 2006, vol. 41, no. 10, pp. 3097–3104.

Monteverde, F., Melandri, C., and Guicciardi, S., Microstructure and Mechanical Properties of an HfB2 + 30 vol % SiC Composite Consolidated by Spark Plasma Sintering, Mater. Chem. Phys., 2006, vol. 100, nos. 2–3, pp. 513–519.

Monteverde, F., Ultra-High Temperature HfB2-SiC Ceramics Consolidated by Hot Pressing and Spark Plasma Sintering, J. Alloys. Comp., 2007, vol. 428, nos. 1–2, pp. 197–205.

Licheri, R., Orrù, R., Locci, A.M., and Cao, G., Efficient Synthesis/Sintering Routes to Obtain Fully Dense ZrB2-SiC Ultra-High-Temperature Ceramics (UHTCs), Ind. Eng. Chem. Res., 2007, vol. 46, pp. 9087–9096.

Licheri, R., Orrù, R., Musa, C., and Cao, G., Combination of SHS and SPS Techniques for Fabrication of Fully Dense ZrB2-ZrC-SiC Composites, Mater. Lett., 2008, vol. 62, pp. 432–435.

Hirota, K., Nakane, S., Yoshinaka, M., and Yamaguchi, O., Spark Plasma Sintering (SPS) of Several Intermetallic Compounds Prepared by Self-Propagating High-Temperature Synthesis (SHS), Int. J. SHS, 2001, vol. 10, no. 3, pp. 345–358.

Bull, J., White, M.J., and Kaufman, L., Ablation Resistant Zirconium and Hafnium Ceramics, US Patent 5750450, 1998.

Cincotti, A., Licheri, R., Locci, A.M., Orrù, R., and Cao, G., A Review on Combustion Synthesis of Novel Materials: Recent Experimental and Modeling Results, J. Chem. Technol. Biot., 2003, vol. 78, nos. 2–3, pp. 122–127.

Locci, A.M., Orrù, R., Cao, G., and Munir, Z.A., Simultaneous Spark Plasma Synthesis and Densification of TiC-TiB2 Composites, J. Am. Ceram. Soc., 2006, vol. 89, no. 3, pp. 848–855.

Matthews, F.L. and Rawlings, R., Composite Materials: Engineering and Science London: Chapman & Hall, 1994.

Barin, I., Thermochemical Data of Pure Substances, New York: VCH, 1989.

Gasch, M., Ellerby, D., Irby, E., Beckman, S., Gusman, M., and Johnson, S., Processing, Properties and Arc Jet Oxidation of Hafnium Diboride/Silicon Carbide Ultra High Temperature Ceramics, J. Mater. Sci., 2004, vol. 39, no. 19, pp. 5925–5937.

Wu, W.W., Zhang, G.J., Kann, Y.M., and Wang, P.L., Reactive Hot Pressing of ZrB2-SiC-ZrC Ultra High-Temperature Ceramics at 1800°C, J. Am. Ceram. Soc., 2006, vol. 89, no. 9, pp. 2967–2969.

Hinze, J.W., Tripp, W.C., and Graham, H.C., The High-Temperature Oxidation Behavior of HfB2 + 20 v/o SiC Composite, J. Electrochem. Soc., 1975, vol. 122, no. 9, pp. 1249–1254.

Peng, F. and Speyer, R.F., Oxidation Resistance of Fully Dense ZrB2 with SiC, TaB2, and TaSi2 Additives, J. Am. Ceram. Soc., 2008, vol. 91, no. 5, pp. 1489–1494.

Chamberlain, A.L., Fahrenholtz, W.G., Hilmas, G.E., and Ellerby, D.T., High-Strength Zirconium Diboride-Based Ceramics, J. Am. Ceram. Soc., 2004, vol. 87, no. 6, pp. 1170–1172.

Mishra, S.K., Das, S., and Pathak, L.C., Defect Structures in Zirconium Diboride Powder Prepared by Self-Propagating High-Temperature Synthesis, Mater. Sci. Eng. A, 2004, vol. 364, nos. 1–2, pp. 249–255.