Mô hình chiều cao vệ tinh tiết lộ sự thay đổi sinh khối trên mặt đất trong các cảnh quan nhiệt đới

Forest Ecology and Management - Tập 497 - Trang 119497 - 2021
Birgit Wessel, Martyna M. Kotowska, Christoph Leuschner, Mangarah Silalahi, Jonas Hein, Fabian Brambach, Michael Schlund, Nicolò Camarretta, Stefan Erasmi, Holger Kreft, I Nengah Surati Jaya

Tóm tắt

Việc ước lượng diện rộng sinh khối trên mặt đất (AGB) và những thay đổi của nó như một chỉ số cho quá trình khử carbon và phát thải carbon hiện đang gặp nhiều bất ổn. Ở đây, chúng tôi đã kết hợp các mô hình chiều cao kỹ thuật số vệ tinh tổng hợp giao thoa (InSAR) thu được từ TanDEM-X với các khảo sát mặt đất lặp lại từ các năm 2012 và 2019 để ước lượng chiều cao InSAR và sự thay đổi AGB trong một cảnh quan đa dạng về cấu trúc và có tính năng động ở Sumatra, Indonesia. Kết quả cho thấy rằng các mô hình chiều cao InSAR có độ chính xác cao và mối quan hệ giữa chiều cao InSAR và sự thay đổi AGB cho ra hệ số xác định R2 là 0.65 và sai số bình quân phương gốc (RMSE) qua kiểm định chéo là 2.38 Mg ha−1 năm−1, tương đương 13.32% của phạm vi khác biệt AGB thực tế. Những thay đổi AGB ước lượng với TanDEM-X còn liên quan đến chiều cao tán cây ban đầu và hoạt động cháy trong khu vực nghiên cứu. Chiều cao tán cây ban đầu và sự xuất hiện của cháy có ảnh hưởng đáng kể đến sự thay đổi AGB. Nói chung, chiều cao tán cây thấp có xu hướng liên quan đến việc gia tăng AGB theo thời gian, trong khi chiều cao tán cây cao có xu hướng liên quan đến AGB ổn định hoặc giảm. Như dự kiến, các vụ cháy có tác động tiêu cực đến sự thay đổi AGB, điều này rõ ràng hơn ở các khu vực rừng so với các nhượng bộ dầu cọ. Kết quả của nghiên cứu này có liên quan đến việc sử dụng các mô hình chiều cao InSAR từ vệ tinh và tiềm năng của nó trong việc ước lượng chiều cao tán cây và sự thay đổi AGB trên quy mô không gian lớn. Nghiên cứu đã chỉ ra rằng những thay đổi này có thể liên quan đến nguồn gốc và các quy trình hệ sinh thái của chúng. Kỹ thuật ước lượng thay đổi AGB này có thể được sử dụng để mô hình hóa tác động của các vụ cháy lên sự thay đổi AGB và phát thải carbon, điều này rất quan trọng cho quản lý rừng bền vững.

Từ khóa

#Thay đổi sinh khối trên mặt đất #Mô hình chiều cao #Dữ liệu radar tổng hợp giao thoa (InSAR) #TanDEM-X #Rừng nhiệt đới

Tài liệu tham khảo

Armenteras et al., 2017 D. Armenteras C. Gibbes J.A. Anaya L.M. Dávalos Integrating remotely sensed fires for predicting deforestation for REDD+ Ecol. Appl. 27 4 2017 1294 1304 Armenteras, D., Gibbes, C., Anaya, J.A., Dávalos, L.M., 2017. Integrating remotely sensed fires for predicting deforestation for REDD+. Ecological applications 27 (4), 1294–1304. Asner and Mascaro, 2014 G.P. Asner J. Mascaro Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric Remote Sens. Environ. 140 2014 614 624 URL: http://www.sciencedirect.com/science/article/pii/S003442571300360X Asner, G.P., Mascaro, J., 2014. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sensing of Environment 140, 614 – 624. URL: http://www.sciencedirect.com/science/article/pii/S003442571300360X Austin et al., 2019 K.G. Austin A. Schwantes Y. Gu P.S. Kasibhatla What causes deforestation in Indonesia? Environ. Res. Lett. 14 2 feb 2019 024007 10.1088/1748-9326/aaf6db Austin, K.G., Schwantes, A., Gu, Y., Kasibhatla, P.S., feb 2019. What causes deforestation in Indonesia? Environmental Research Letters 14 (2), 024007. URL: https://doi.org/10.1088/1748-9326/aaf6db Beer et al., 2010 C. Beer M. Reichstein E. Tomelleri P. Ciais M. Jung N. Carvalhais C. Rödenbeck M.A. Arain D. Baldocchi G.B. Bonan Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate Science 329 5993 2010 834 838 Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329 (5993), 834–838. Brun et al., 2015 C. Brun A.R. Cook J.S.H. Lee S.A. Wich L.P. Koh L.R. Carrasco Analysis of deforestation and protected area effectiveness in Indonesia: A comparison of Bayesian spatial models Global Environ. Change 31 2015 285 295 Brun, C., Cook, A.R., Lee, J.S.H., Wich, S.A., Koh, L.P., Carrasco, L.R., 2015. Analysis of deforestation and protected area effectiveness in Indonesia: A comparison of Bayesian spatial models. Global environmental change 31, 285–295. Cai et al., 2015 W. Cai A. Santoso G. Wang S.-W. Yeh S.-I. An K.M. Cobb M. Collins E. Guilyardi F.-F. Jin J.-S. Kug M. Lengaigne M.J. McPhaden K. Takahashi A. Timmermann G. Vecchi M. Watanabe L. Wu ENSO and greenhouse warming Nature Climate Change 5 9 2015 849 859 number: 9 Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/nclimate2743 Cai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K.M., Collins, M., Guilyardi, E., Jin, F.-F., Kug, J.-S., Lengaigne, M., McPhaden, M.J., Takahashi, K., Timmermann, A., Vecchi, G., Watanabe, M., Wu, L., Sep. 2015. ENSO and greenhouse warming. Nature Climate Change 5 (9), 849–859, number: 9 Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/nclimate2743. Cao et al., 2016 L. Cao N.C. Coops J.L. Innes S.R. Sheppard L. Fu H. Ruan G. She Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data Remote Sens. Environ. 178 2016 158 171 URL: http://www.sciencedirect.com/science/article/pii/S0034425716301067 Cao, L., Coops, N.C., Innes, J.L., Sheppard, S.R., Fu, L., Ruan, H., She, G., 2016. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data. Remote Sensing of Environment 178, 158 – 171. URL: http://www.sciencedirect.com/science/article/pii/S0034425716301067 Cardoso et al., 2018 A.W. Cardoso I. Oliveras K.A. Abernethy K.J. Jeffery D. Lehmann J. Edzang Ndong I. McGregor C.M. Belcher W.J. Bond Y.S. Malhi Grass species flammability, not biomass, drives changes in fire behavior at tropical forest-savanna transitions Front. Forests Global Change 1 2018 6 Cardoso, A.W., Oliveras, I., Abernethy, K.A., Jeffery, K.J., Lehmann, D., Edzang Ndong, J., McGregor, I., Belcher, C.M., Bond, W.J., Malhi, Y.S., 2018. Grass species flammability, not biomass, drives changes in fire behavior at tropical forest-savanna transitions. Frontiers in Forests and Global Change 1, 6. Chave et al., 2009 J. Chave D. Coomes S. Jansen S.L. Lewis N.G. Swenson A.E. Zanne Towards a worldwide wood economics spectrum Ecol. Lett. 12 4 2009 351 366 Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., 2009. Towards a worldwide wood economics spectrum. Ecology letters 12 (4), 351–366. Chave et al., 2014 J. Chave M. Réjou-Méchain A. Búrquez E. Chidumayo M.S. Colgan W.B.C. Delitti A. Duque T. Eid P.M. Fearnside R.C. Goodman Improved allometric models to estimate the aboveground biomass of tropical trees Glob. Change Biol. 20 10 2014 3177 3190 Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20 (10), 3177–3190. Chen et al., 2015 Q. Chen G. Vaglio Laurin R. Valentini Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels Remote Sens. Environ. 160 2015 134 143 URL: https://www.sciencedirect.com/science/article/pii/S0034425715000188 Chen, Q., Vaglio Laurin, G., Valentini, R., 2015. Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels. Remote Sensing of Environment 160, 134–143. URL: https://www.sciencedirect.com/science/article/pii/S0034425715000188 Chhatre and Agrawal, 2009 A. Chhatre A. Agrawal Trade-offs and synergies between carbon storage and livelihood benefits from forest commons Proc. Nat. Acad. Sci. 106 42 2009 17667 17670 URL: https://www.pnas.org/content/106/42/17667 Chhatre, A., Agrawal, A., 2009. Trade-offs and synergies between carbon storage and livelihood benefits from forest commons. Proceedings of the National Academy of Sciences 106 (42), 17667–17670. URL: https://www.pnas.org/content/106/42/17667 Clough et al., 2016 Y. Clough V.V. Krishna M.D. Corre K. Darras L.H. Denmead A. Meijide S. Moser O. Musshoff S. Steinebach E. Veldkamp K. Allen A.D. Barnes N. Breidenbach U. Brose D. Buchori R. Daniel R. Finkeldey I. Harahap D. Hertel A.M. Holtkamp E. Hörandl B. Irawan I.N.S. Jaya M. Jochum B. Klarner A. Knohl M.M. Kotowska V. Krashevska H. Kreft S. Kurniawan C. Leuschner M. Maraun D.N. Melati N. Opfermann C. Pérez-Cruzado W.E. Prabowo K. Rembold A. Rizali R. Rubiana D. Schneider S.S. Tjitrosoedirdjo A. Tjoa T. Tscharntke S. Scheu Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes Nat. Commun. 7 13137 2016 1 12 Clough, Y., Krishna, V.V., Corre, M.D., Darras, K., Denmead, L.H., Meijide, A., Moser, S., Musshoff, O., Steinebach, S., Veldkamp, E., Allen, K., Barnes, A.D., Breidenbach, N., Brose, U., Buchori, D., Daniel, R., Finkeldey, R., Harahap, I., Hertel, D., Holtkamp, A.M., Hörandl, E., Irawan, B., Jaya, I.N.S., Jochum, M., Klarner, B., Knohl, A., Kotowska, M.M., Krashevska, V., Kreft, H., Kurniawan, S., Leuschner, C., Maraun, M., Melati, D.N., Opfermann, N., Pérez-Cruzado, C., Prabowo, W.E., Rembold, K., Rizali, A., Rubiana, R., Schneider, D., Tjitrosoedirdjo, S.S., Tjoa, A., Tscharntke, T., Scheu, S., 2016. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nature Communications 7 (13137), 1–12. Cochrane, 2003 M.A. Cochrane Fire science for rainforests Nature 421 6926 2003 913 919 Cochrane, M.A., 2003. Fire science for rainforests. Nature 421 (6926), 913–919. Cochrane and Laurance, 2002 M.A. Cochrane W.F. Laurance Fire as a large-scale edge effect in Amazonian forests J. Trop. Ecol. 2002 311 325 Cochrane, M.A., Laurance, W.F., 2002. Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology, 311–325. Curtis et al., 2018 P.G. Curtis C.M. Slay N.L. Harris A. Tyukavina M.C. Hansen Classifying drivers of global forest loss Science 361 6407 2018 1108 1111 Curtis, P.G., Slay, C.M., Harris, N.L., Tyukavina, A., Hansen, M.C., 2018. Classifying drivers of global forest loss. Science 361 (6407), 1108–1111. Dall, 2007 J. Dall InSAR elevation bias caused by penetration into uniform volumes IEEE Trans. Geosci. Remote Sens. 45 7 2007 2319 2324 Dall, J., 2007. InSAR elevation bias caused by penetration into uniform volumes. IEEE Transactions on Geoscience and Remote Sensing 45 (7), 2319–2324. Daskalova et al., 2020 G.N. Daskalova I.H. Myers-Smith A.D. Bjorkman S.A. Blowes S.R. Supp A.E. Magurran M. Dornelas Landscape-scale forest loss as a catalyst of population and biodiversity change Science 368 6497 2020 1341 1347 URL: https://science.sciencemag.org/content/368/6497/1341 Daskalova, G.N., Myers-Smith, I.H., Bjorkman, A.D., Blowes, S.A., Supp, S.R., Magurran, A.E., Dornelas, M., 2020. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 368 (6497), 1341–1347. URL: https://science.sciencemag.org/content/368/6497/1341 Drescher et al., 2016 J. Drescher K. Rembold K. Allen P. Beckschäfer D. Buchori Y. Clough H. Faust A.M. Fauzi D. Gunawan D. Hertel B. Irawan I.N.S. Jaya B. Klarner C. Kleinn A. Knohl M.M. Kotowska V. Krashevska V. Krishna C. Leuschner W. Lorenz A. Meijide D. Melati M. Nomura C. Pérez-Cruzado M. Qaim I.Z. Siregar S. Steinebach A. Tjoa T. Tscharntke B. Wick K. Wiegand H. Kreft S. Scheu Ecological and socio-economic functions across tropical land use systems after rainforest conversion Philosoph. Trans. Roy. Soc. B: Biol. Sci. 371 1694 2016 20150275 URL: https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2015.0275 Drescher, J., Rembold, K., Allen, K., Beckschäfer, P., Buchori, D., Clough, Y., Faust, H., Fauzi, A.M., Gunawan, D., Hertel, D., Irawan, B., Jaya, I.N.S., Klarner, B., Kleinn, C., Knohl, A., Kotowska, M.M., Krashevska, V., Krishna, V., Leuschner, C., Lorenz, W., Meijide, A., Melati, D., Nomura, M., Pérez-Cruzado, C., Qaim, M., Siregar, I.Z., Steinebach, S., Tjoa, A., Tscharntke, T., Wick, B., Wiegand, K., Kreft, H., Scheu, S., 2016. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philosophical Transactions of the Royal Society B: Biological Sciences 371 (1694), 20150275. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2015.0275 Dubayah et al., 2010 R.O. Dubayah S.L. Sheldon D.B. Clark M.A. Hofton J.B. Blair G.C. Hurtt R.L. Chazdon Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica J. Geophys. Res.: Biogeosci. 115 G2 2010 URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JG000933 Dubayah, R.O., Sheldon, S.L., Clark, D.B., Hofton, M.A., Blair, J.B., Hurtt, G.C., Chazdon, R.L., 2010. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. Journal of Geophysical Research: Biogeosciences 115 (G2). URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JG000933 Feintrenie and Levang, 2009 L. Feintrenie P. Levang Sumatra’s Rubber Agroforests: Advent, Rise and Fall of a Sustainable Cropping System Small-scale Forestry 8 3 2009 323 335 10.1007/s11842-009-9086-2 Feintrenie, L., Levang, P., 2009. Sumatra’s Rubber Agroforests: Advent, Rise and Fall of a Sustainable Cropping System. Small-scale Forestry 8 (3), 323–335. URL: https://doi.org/10.1007/s11842-009-9086-2 null Ferraz et al., 2018 A. Ferraz S. Saatchi L. Xu S. Hagen J. Chave Y. Yu V. Meyer M. Garcia C. Silva O. Roswintiart A. Samboko P. Sist S. Walker T.R.H. Pearson A. Wijaya F.B. Sullivan E. Rutishauser D. Hoekman S. Ganguly Carbon storage potential in degraded forests of Kalimantan, Indonesia Environ. Res. Lett. 13 9 aug 2018 095001 10.1088/1748-9326/aad782 Ferraz, A., Saatchi, S., Xu, L., Hagen, S., Chave, J., Yu, Y., Meyer, V., Garcia, M., Silva, C., Roswintiart, O., Samboko, A., Sist, P., Walker, S., Pearson, T.R.H., Wijaya, A., Sullivan, F.B., Rutishauser, E., Hoekman, D., Ganguly, S., aug 2018. Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environmental Research Letters 13 (9), 095001. URL: https://doi.org/10.1088/1748-9326/aad782 null Fritz et al., 2011 T. Fritz C. Rossi N. Yague-Martinez F. Rodriguez-Gonzalez M. Lachaise H. Breit Interferometric processing of TanDEM-X data 2011 IEEE International Geoscience and Remote Sensing Symposium 2011 2428 2431 Fritz, T., Rossi, C., Yague-Martinez, N., Rodriguez-Gonzalez, F., Lachaise, M., Breit, H., 2011. Interferometric processing of TanDEM-X data. In: 2011 IEEE International Geoscience and Remote Sensing Symposium. pp. 2428–2431. Giglio et al., 2003 L. Giglio J. Descloitres C.O. Justice Y.J. Kaufman An Enhanced Contextual Fire Detection Algorithm for MODIS Remote Sens. Environ. 87 2 2003 273 282 URL: http://www.sciencedirect.com/science/article/pii/S0034425703001846 Giglio, L., Descloitres, J., Justice, C.O., Kaufman, Y.J., 2003. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sensing of Environment 87 (2), 273 – 282. URL: http://www.sciencedirect.com/science/article/pii/S0034425703001846 null Guillaume et al., 2018 T. Guillaume M.M. Kotowska D. Hertel A. Knohl V. Krashevska K. Murtilaksono S. Scheu Y. Kuzyakov Carbon costs and benefits of Indonesian rainforest conversion to plantations Nautre Commun. 9 2388 2018 1 11 Guillaume, T., Kotowska, M.M., Hertel, D., Knohl, A., Krashevska, V., Murtilaksono, K., Scheu, S., Kuzyakov, Y., 2018. Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nautre Communications 9 (2388), 1–11. Hein, 2018 J. Hein Political Ecology of REDD+ in Indonesia: Agrarian Conflicts and Forest Carbon 1st ed. 2018 Routledge London Hein, J., 2018. Political Ecology of REDD+ in Indonesia: Agrarian Conflicts and Forest Carbon, 1st Edition. Routledge, London. Hein et al., 2016 J. Hein S. Adiwibowo C. Dittrich Rosyani E. Soetarto H. Faust Rescaling of Access and Property Relations in a Frontier Landscape: Insights from Jambi, Indonesia Professional Geographer 68 3 2016 380 389 10.1080/00330124.2015.1089105 Hein, J., Adiwibowo, S., Dittrich, C., Rosyani, Soetarto, E., Faust, H., 2016. Rescaling of Access and Property Relations in a Frontier Landscape: Insights from Jambi, Indonesia. The Professional Geographer 68 (3), 380–389. URL: https://doi.org/10.1080/00330124.2015.1089105 Hudak et al., 2012 A.T. Hudak E.K. Strand L.A. Vierling J.C. Byrne J.U. Eitel S. Martinuzzi M.J. Falkowski Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys Remote Sens. Environ. 123 2012 25 40 URL: http://www.sciencedirect.com/science/article/pii/S0034425712001162 Hudak, A.T., Strand, E.K., Vierling, L.A., Byrne, J.C., Eitel, J.U., Martinuzzi, S., Falkowski, M.J., 2012. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sensing of Environment 123, 25 – 40. URL: http://www.sciencedirect.com/science/article/pii/S0034425712001162 Janoth et al., 2019 J. Janoth M. Jochum L. Petrat T. Knigge High Resolution wide Swath - the Next Generation X-Band Mission IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2019 3535 3537 Janoth, J., Jochum, M., Petrat, L., Knigge, T., 2019. High Resolution wide Swath - the Next Generation X-Band Mission. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 3535–3537. Karila et al., 2019 K. Karila X. Yu M. Vastaranta M. Karjalainen E. Puttonen J. Hyyppä TanDEM-X digital surface models in boreal forest above-ground biomass change detection ISPRS J. Photogramm. Remote Sensing 148 2019 174 183 URL: http://www.sciencedirect.com/science/article/pii/S0924271619300024 Karila, K., Yu, X., Vastaranta, M., Karjalainen, M., Puttonen, E., Hyyppä, J., 2019. TanDEM-X digital surface models in boreal forest above-ground biomass change detection. ISPRS Journal of Photogrammetry and Remote Sensing 148, 174 – 183. URL: http://www.sciencedirect.com/science/article/pii/S0924271619300024 Khasanah et al., 2015 N. Khasanah M. van Noordwijk H. Ningsih Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils. Cogent Environmental Science 1 1 2015 10.1080/23311843.2015.1119964 Khasanah, N., van Noordwijk, M., Ningsih, H., 2015. Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils. Cogent Environmental Science 1 (1). URL: http://doi.org/10.1080/23311843.2015.1119964 Knapp et al., 2018 N. Knapp A. Huth F. Kugler K. Papathanassiou R. Condit S.P. Hubbell R. Fischer Model-Assisted Estimation of Tropical Forest Biomass Change: A Comparison of Approaches Remote Sensing 10 5 2018 1 23 Knapp, N., Huth, A., Kugler, F., Papathanassiou, K., Condit, R., Hubbell, S.P., Fischer, R., 2018. Model-Assisted Estimation of Tropical Forest Biomass Change: A Comparison of Approaches. Remote Sensing 10 (5), 1–23. Kotowska et al., 2015 M.M. Kotowska C. Leuschner T. Triadiati S. Meriem D. Hertel Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia) Glob. Change Biol. 21 10 2015 3620 3634 URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12979 Kotowska, M.M., Leuschner, C., Triadiati, T., Meriem, S., Hertel, D., 2015. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Global Change Biology 21 (10), 3620–3634. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12979 Krieger et al., 2007 G. Krieger A. Moreira H. Fiedler I. Hajnsek M. Werner M. Younis M. Zink TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry IEEE Trans. Geosci. Remote Sens. 45 11 nov. 2007 3317 3341 Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., Zink, M., nov. 2007. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing 45 (11), 3317–3341. Kugler et al., 2014 F. Kugler D. Schulze I. Hajnsek H. Pretzsch K. Papathanassiou TanDEM-X Pol-InSAR Performance for Forest Height Estimation IEEE Trans. Geosci. Remote Sens. 52 10 10 2014 6404 6422 Kugler, F., Schulze, D., Hajnsek, I., Pretzsch, H., Papathanassiou, K., 10 2014. TanDEM-X Pol-InSAR Performance for Forest Height Estimation. IEEE Transactions on Geoscience and Remote Sensing 52 (10), 6404–6422. Kvalseth, 1985 T.O. Kvalseth Cautionary Note about R2 Am. Statist. 39 4 1985 279 285 Kvalseth, T.O., 1985. Cautionary Note about R2. The American Statistician 39 (4), 279–285. Lachaise et al., 2019 M. Lachaise M. Bachmann T. Fritz M. Huber B. Schweißhelm B. Wessel Generation Of the Tandem-X Change Dem From the New Global Acquisitions (2017–2019) IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium 2019 4480 4483 Lachaise, M., Bachmann, M., Fritz, T., Huber, M., Schweißhelm, B., Wessel, B., 2019. Generation Of the Tandem-X Change Dem From the New Global Acquisitions (2017-2019). In: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. pp. 4480–4483. Langner et al., 2007 A. Langner J. Miettinen F. Siegert Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery Glob. Change Biol. 13 11 2007 2329 2340 10.1111/j.1365-2486.2007.01442.x Langner, A., Miettinen, J., Siegert, F., 2007. Land cover change 2002-2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biology 13 (11), 2329–2340. URL: https://doi.org/10.1111/j.1365-2486.2007.01442.x Laumonier et al., 2010 Y. Laumonier Y. Uryu M. Stüwe A. Budiman B. Setiabudi O. Hadian Eco-floristic sectors and deforestation threats in Sumatra: identifying new conservation area network priorities for ecosystem-based land use planning Biodivers. Conserv. 19 4 Apr. 2010 1153 1174 URL: http://link.springer.com/10.1007/s10531-010-9784-2 Laumonier, Y., Uryu, Y., Stüwe, M., Budiman, A., Setiabudi, B., Hadian, O., Apr. 2010. Eco-floristic sectors and deforestation threats in Sumatra: identifying new conservation area network priorities for ecosystem-based land use planning. Biodiversity and Conservation 19 (4), 1153–1174. URL: http://link.springer.com/10.1007/s10531-010-9784-2 Laurance, 2004 W.F. Laurance Forest-climate interactions in fragmented tropical landscapes Philosoph. Trans. Roy. Soc. London. Series B: Biol. Sci. 359 1443 2004 345 352 Laurance, W.F., 2004. Forest-climate interactions in fragmented tropical landscapes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359 (1443), 345–352. Lawrence and Vandecar, 2015 D. Lawrence K. Vandecar Effects of tropical deforestation on climate and agriculture Nature Climate Change 5 1 2015 27 36 Lawrence, D., Vandecar, K., 2015. Effects of tropical deforestation on climate and agriculture. Nature climate change 5 (1), 27–36. Lüdecke et al., 2021 D. Lüdecke M.S. Ben-Shachar I. Patil P. Waggoner D. Makowski performance: An R Package for Assessment, Comparison and Testing of Statistical Models J. Open Source Softw. 6 60 2021 3139 Lüdecke, D., Ben-Shachar, M.S., Patil, I., Waggoner, P., Makowski, D., 2021. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. Journal of Open Source Software 6 (60), 3139. Lei et al., 2018 Y. Lei R. Treuhaft M. Keller M. dos Santos F. Gonçalves M. Neumann Quantification of selective logging in tropical forest with spaceborne SAR interferometry Remote Sens. Environ. 211 2018 167 183 URL: http://www.sciencedirect.com/science/article/pii/S0034425718301548 Lei, Y., Treuhaft, R., Keller, M., dos Santos, M., Gonçalves, F., Neumann, M., 2018. Quantification of selective logging in tropical forest with spaceborne SAR interferometry. Remote Sensing of Environment 211, 167 – 183. URL: http://www.sciencedirect.com/science/article/pii/S0034425718301548 Lewis et al., 2015 S.L. Lewis D.P. Edwards D. Galbraith Increasing human dominance of tropical forests Science 349 6250 2015 827 832 Lewis, S.L., Edwards, D.P., Galbraith, D., 2015. Increasing human dominance of tropical forests. Science 349 (6250), 827–832. Luskin and Potts, 2011 M.S. Luskin M.D. Potts Microclimate and habitat heterogeneity through the oil palm lifecycle Basic Appl. Ecol. 12 6 2011 540 551 URL: https://www.sciencedirect.com/science/article/pii/S1439179111000764 Luskin, M.S., Potts, M.D., 2011. Microclimate and habitat heterogeneity through the oil palm lifecycle. Basic and Applied Ecology 12 (6), 540–551. URL: https://www.sciencedirect.com/science/article/pii/S1439179111000764 Malhi and Grace, 2000 Y. Malhi J. Grace Tropical forests and atmospheric carbon dioxide Trends Ecol. Evol. 15 8 2000 332 337 Malhi, Y., Grace, J., 2000. Tropical forests and atmospheric carbon dioxide. Trends in Ecology & Evolution 15 (8), 332–337. McRoberts et al., 2015 R.E. McRoberts E. Næsset T. Gobakken O.M. Bollandsås Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data Remote Sens. Environ. 164 2015 36 42 URL: https://www.sciencedirect.com/science/article/pii/S0034425715000772 McRoberts, R.E., Næsset, E., Gobakken, T., Bollandsås, O.M., 2015. Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data. Remote Sensing of Environment 164, 36–42. URL: https://www.sciencedirect.com/science/article/pii/S0034425715000772 Meijide et al., 2018 A. Meijide C.S. Badu F. Moyano N. Tiralla D. Gunawan A. Knohl Impact of forest conversion to oil palm and rubber plantations on microclimate and the role of the 2015 ENSO event Agric. Forest Meteorol. 252 2018 208 219 Meijide, A., Badu, C.S., Moyano, F., Tiralla, N., Gunawan, D., Knohl, A., 2018. Impact of forest conversion to oil palm and rubber plantations on microclimate and the role of the 2015 ENSO event. Agricultural and forest meteorology 252, 208–219. Mets et al., 2017 K.D. Mets D. Armenteras L.M. Dávalos Spatial autocorrelation reduces model precision and predictive power in deforestation analyses Ecosphere 8 5 2017 e01824 URL: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecs2.1824 Mets, K.D., Armenteras, D., Dávalos, L.M., 2017. Spatial autocorrelation reduces model precision and predictive power in deforestation analyses. Ecosphere 8 (5), e01824. URL: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecs2.1824 Meyer et al., 2013 V. Meyer S.S. Saatchi J. Chave J.W. Dalling S. Bohlman G.A. Fricker C. Robinson M. Neumann S. Hubbell Detecting tropical forest biomass dynamics from repeated airborne lidar measurements Biogeosciences 10 8 2013 5421 5438 URL: https://bg.copernicus.org/articles/10/5421/2013/ Meyer, V., Saatchi, S.S., Chave, J., Dalling, J.W., Bohlman, S., Fricker, G.A., Robinson, C., Neumann, M., Hubbell, S., 2013. Detecting tropical forest biomass dynamics from repeated airborne lidar measurements. Biogeosciences 10 (8), 5421–5438. URL: https://bg.copernicus.org/articles/10/5421/2013/ Nakagawa et al., 2017 S. Nakagawa P.C.D. Johnson H. Schielzeth The coefficient of determination r 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded J. Roy. Soc. Interface 14 134 2017 20170213 URL: https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0213 Nakagawa, S., Johnson, P.C.D., Schielzeth, H., 2017. The coefficient of determination r2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of The Royal Society Interface 14 (134), 20170213. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0213 Numata et al., 2017 I. Numata S.S. Silva M.A. Cochrane M.V.N. D’Oliveira Fire and edge effects in a fragmented tropical forest landscape in the southwestern Amazon For. Ecol. Manage. 401 2017 135 146 Numata, I., Silva, S.S., Cochrane, M.A., D’Oliveira, M.V.N., 2017. Fire and edge effects in a fragmented tropical forest landscape in the southwestern Amazon. Forest Ecology and Management 401, 135–146. Pan et al., 2011 Y. Pan R.A. Birdsey J. Fang R. Houghton P.E. Kauppi W.A. Kurz O.L. Phillips A. Shvidenko S.L. Lewis J.G. Canadell P. Ciais R.B. Jackson S.W. Pacala A.D. McGuire S. Piao A. Rautiainen S. Sitch D. Hayes A Large and Persistent Carbon Sink in the World’s Forests Science 333 6045 2011 988 993 Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A Large and Persistent Carbon Sink in the World’s Forests. Science 333 (6045), 988–993. null null Réjou-Méchain et al., 2019 M. Réjou-Méchain N. Barbier P. Couteron P. Ploton G. Vincent M. Herold S. Mermoz S. Saatchi J. Chave F. de Boissieu J.-B. Féret S.M. Takoudjou R. Pélissier Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them Surv. Geophys. 40 2019 881 911 Réjou-Méchain, M., Barbier, N., Couteron, P., Ploton, P., Vincent, G., Herold, M., Mermoz, S., Saatchi, S., Chave, J., de Boissieu, F., Féret, J.-B., Takoudjou, S.M., Pélissier, R., 2019. Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them. Surveys in Geophysics 40, 881–911. Réjou-Méchain et al., 2017 M. Réjou-Méchain A. Tanguy C. Piponiot J. Chave B. Hérault biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests Methods Ecol. Evol. 8 9 2017 1163 1167 URL: https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12753 Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., Hérault, B., 2017. biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution 8 (9), 1163–1167. URL: https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12753 Réjou-Méchain et al., 2015 M. Réjou-Méchain B. Tymen L. Blanc S. Fauset T.R. Feldpausch A. Monteagudo O.L. Phillips H. Richard J. Chave Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest Remote Sens. Environ. 169 2015 93 101 URL: http://www.sciencedirect.com/science/article/pii/S0034425715300894 Réjou-Méchain, M., Tymen, B., Blanc, L., Fauset, S., Feldpausch, T.R., Monteagudo, A., Phillips, O.L., Richard, H., Chave, J., 2015. Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sensing of Environment 169, 93 – 101. URL: http://www.sciencedirect.com/science/article/pii/S0034425715300894 Rizzoli et al., 2017 P. Rizzoli M. Martone C. Gonzalez C. Wecklich D.B. Tridon B. Bräutigam M. Bachmann D. Schulze T. Fritz M. Huber B. Wessel G. Krieger M. Zink A. Moreira Generation and performance assessment of the global TanDEM-X digital elevation model ISPRS J. Photogramm. Remote Sensing 132 2017 119 139 URL: http://www.sciencedirect.com/science/article/pii/S092427161730093X Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Tridon, D.B., Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel, B., Krieger, G., Zink, M., Moreira, A., 2017. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS Journal of Photogrammetry and Remote Sensing 132, 119 – 139. URL: http://www.sciencedirect.com/science/article/pii/S092427161730093X null Sato et al., 2016 L.Y. Sato V.C.F. Gomes Y.E. Shimabukuro M. Keller E. Arai M.N. Dos-Santos I.F. Brown Post-fire changes in forest biomass retrieved by airborne LiDAR in Amazonia Remote Sensing 8 10 2016 839 Sato, L.Y., Gomes, V.C.F., Shimabukuro, Y.E., Keller, M., Arai, E., Dos-Santos, M.N., Brown, I.F., 2016. Post-fire changes in forest biomass retrieved by airborne LiDAR in Amazonia. Remote sensing 8 (10), 839. Schlund et al., 2019 M. Schlund D. Baron P. Magdon S. Erasmi Canopy penetration depth estimation with TanDEM-X and its compensation in temperate forests ISPRS J. Photogramm. Remote Sensing 147 2019 232 241 URL: http://www.sciencedirect.com/science/article/pii/S0924271618303228 Schlund, M., Baron, D., Magdon, P., Erasmi, S., 2019. Canopy penetration depth estimation with TanDEM-X and its compensation in temperate forests. ISPRS Journal of Photogrammetry and Remote Sensing 147, 232 – 241. URL: http://www.sciencedirect.com/science/article/pii/S0924271618303228 Schlund et al., 2020 M. Schlund S. Erasmi K. Scipal Comparison of Aboveground Biomass Estimation From InSAR and LiDAR Canopy Height Models in Tropical Forests IEEE Geosci. Remote Sens. Lett. 17 3 March 2020 367 371 Schlund, M., Erasmi, S., Scipal, K., March 2020. Comparison of Aboveground Biomass Estimation From InSAR and LiDAR Canopy Height Models in Tropical Forests. IEEE Geoscience and Remote Sensing Letters 17 (3), 367–371. Schlund et al., 2015 M. Schlund F. von Poncet S. Kuntz C. Schmullius D.H. Hoekman TanDEM-X data for aboveground biomass retrieval in a tropical peat swamp forest Remote Sens. Environ. 158 2015 255 266 URL: http://www.sciencedirect.com/science/article/pii/S0034425714004581 Schlund, M., von Poncet, F., Kuntz, S., Schmullius, C., Hoekman, D.H., 2015. TanDEM-X data for aboveground biomass retrieval in a tropical peat swamp forest. Remote Sensing of Environment 158, 255–266. URL: http://www.sciencedirect.com/science/article/pii/S0034425714004581 Schroeder et al., 2014 W. Schroeder P. Oliva L. Giglio I.A. Csiszar The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment Remote Sens. Environ. 143 2014 85 96 URL: http://www.sciencedirect.com/science/article/pii/S0034425713004483 Schroeder, W., Oliva, P., Giglio, L., Csiszar, I.A., 2014. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment 143, 85–96. URL: http://www.sciencedirect.com/science/article/pii/S0034425713004483 Solberg et al., 2013 S. Solberg R. Astrup J. Breidenbach B. Nilsen D. Weydahl Monitoring spruce volume and biomass with InSAR data from TanDEM-X Remote Sens. Environ. 139 2013 60 67 Solberg, S., Astrup, R., Breidenbach, J., Nilsen, B., Weydahl, D., 2013. Monitoring spruce volume and biomass with InSAR data from TanDEM-X. Remote Sensing of Environment 139, 60–67. Solberg et al., 2015 S. Solberg B. Gizachew E. Naesset T. Gobakken O.M. Bollandsas E.W. Mauya H. Olsson R. Malimbwi E. Zahabu Monitoring forest carbon in a Tanzanian woodland using interferometric SAR: a novel methodology for REDD+ Carbon Balance Manage. 10 1 Jun 2015 14 10.1186/s13021-015-0023-8 Solberg, S., Gizachew, B., Naesset, E., Gobakken, T., Bollandsas, O.M., Mauya, E.W., Olsson, H., Malimbwi, R., Zahabu, E., Jun 2015. Monitoring forest carbon in a Tanzanian woodland using interferometric SAR: a novel methodology for REDD+. Carbon Balance and Management 10 (1), 14. URL: https://doi.org/10.1186/s13021-015-0023-8 Solberg et al., 2018 S. Solberg J. May W. Bogren J. Breidenbach T. Torp B. Gizachew Interferometric SAR DEMs for Forest Change in Uganda 2000–2012 Remote Sensing 10 2 2018 1 17 Solberg, S., May, J., Bogren, W., Breidenbach, J., Torp, T., Gizachew, B., 2018. Interferometric SAR DEMs for Forest Change in Uganda 2000-2012. Remote Sensing 10 (2), 1–17. Solberg et al., 2014 S. Solberg E. Naesset T. Gobakken O.-M. Bollandsas Forest biomass change estimated from height change in interferometric SAR height models Carbon Balance Manage. 9 1 2014 5 10.1186/s13021-014-0005-2 Solberg, S., Naesset, E., Gobakken, T., Bollandsas, O.-M., 2014. Forest biomass change estimated from height change in interferometric SAR height models. Carbon Balance and Management 9 (1), 5. URL: https://doi.org/10.1186/s13021-014-0005-2 null Treuhaft and Siqueira, 2004 R.N. Treuhaft P.R. Siqueira The calculated performance of forest structure and biomass estimates from interferometric radar Waves Random Media 14 2 2004 345 358 Treuhaft, R.N., Siqueira, P.R., 2004. The calculated performance of forest structure and biomass estimates from interferometric radar. Waves in Random Media 14 (2), 345–358. van der Werf et al., 2009 G.R. van der Werf D.C. Morton R.S. DeFries J.G.J. Olivier P.S. Kasibhatla R.B. Jackson G.J. Collatz J.T. Randerson CO2 emissions from forest loss Nat. Geosci. 2 2009 737 738 van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G.J., Kasibhatla, P.S., Jackson, R.B., Collatz, G.J., Randerson, J.T., 2009. CO2 emissions from forest loss. Nature Geoscience 2, 737–738. Venter et al., 2016 O. Venter E.W. Sanderson A. Magrach J.R. Allan J. Beher K.R. Jones H.P. Possingham W.F. Laurance P. Wood B.M. Fekete Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation Nature Commun. 7 1 2016 1 11 Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K.R., Possingham, H.P., Laurance, W.F., Wood, P., Fekete, B.M., 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature communications 7 (1), 1–11. Wang et al., 2017 F. Wang Y. Ding E.J. Sayer Q. Li B. Zou Q. Mo Y. Li X. Lu J. Tang W. Zhu Z. Li Tropical forest restoration: Fast resilience of plant biomass contrasts with slow recovery of stable soil C stocks Funct. Ecol. 31 12 2017 2344 2355 URL: https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2435.12925 Wang, F., Ding, Y., Sayer, E.J., Li, Q., Zou, B., Mo, Q., Li, Y., Lu, X., Tang, J., Zhu, W., Li, Z., 2017. Tropical forest restoration: Fast resilience of plant biomass contrasts with slow recovery of stable soil C stocks. Functional Ecology 31 (12), 2344–2355. URL: https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2435.12925 Watson et al., 2018 J.E.M. Watson T. Evans O. Venter B. Williams A. Tulloch C. Stewart I. Thompson J.C. Ray K. Murray A. Salazar The exceptional value of intact forest ecosystems Nature Ecol. Evol. 2 4 2018 599 610 Watson, J.E.M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., Thompson, I., Ray, J.C., Murray, K., Salazar, A., 2018. The exceptional value of intact forest ecosystems. Nature ecology & evolution 2 (4), 599–610. Wedeux et al., 2020 B. Wedeux M. Dalponte M. Schlund S. Hagen M. Cochrane L. Graham A. Usup A. Thomas D. Coomes Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys Glob. Change Biol. 26 7 2020 3947 3964 URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15108 Wedeux, B., Dalponte, M., Schlund, M., Hagen, S., Cochrane, M., Graham, L., Usup, A., Thomas, A., Coomes, D., 2020. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys. Global Change Biology 26 (7), 3947–3964. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15108 Wessel et al., 2018 B. Wessel M. Huber C. Wohlfart U. Marschalk D. Kosmann A. Roth Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data ISPRS J. Photogramm. Remote Sens. 139 2018 171 182 URL: http://www.sciencedirect.com/science/article/pii/S0924271618300522 Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., Roth, A., 2018. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS Journal of Photogrammetry and Remote Sensing 139, 171 – 182. URL: http://www.sciencedirect.com/science/article/pii/S0924271618300522 Zanne et al., 2009 A.E. Zanne G. Lopez-Gonzalez D.A. Coomes J. Ilic S. Jansen S.L. Lewis R.B. Miller N.G. Swenson M.C. Wiemann J. Chave Data from: Towards a worldwide wood economics spectrum 2009 Dryad Dataset Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B., Swenson, N.G., Wiemann, M.C., Chave, J., 2009. Data from: Towards a worldwide wood economics spectrum, Dryad, Dataset. Zhang et al., 2012 H. Zhang D. Guan M. Song Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China For. Ecol. Manage. 277 2012 90 97 URL: https://www.sciencedirect.com/science/article/pii/S0378112712002241 Zhang, H., Guan, D., Song, M., 2012. Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China. Forest Ecology and Management 277, 90–97. URL: https://www.sciencedirect.com/science/article/pii/S0378112712002241