Space of invariant bilinear forms

Proceedings - Mathematical Sciences - Tập 128 - Trang 1-22 - 2018
Ravi S Kulkarni1, Jagmohan Tanti2
1Bhaskaracharya Pratisthana, Pune, India
2Central University of Jharkhand, CTI Campus, Ranchi, India

Tóm tắt

Let $${\mathbb {F}}$$ be a field, V a vector space of dimension n over $${\mathbb {F}}$$ . Then the set of bilinear forms on V forms a vector space of dimension $$n^2$$ over $${\mathbb {F}}$$ . For char $${\mathbb {F}}\ne 2$$ , if T is an invertible linear map from V onto V then the set of T-invariant bilinear forms, forms a subspace of this space of forms. In this paper, we compute the dimension of T-invariant bilinear forms over $${\mathbb {F}}$$ . Also we investigate similar type of questions for the infinitesimally T-invariant bilinear forms (T-skew symmetric forms). Moreover, we discuss the existence of nondegenerate invariant (resp. infinitesimally invariant) bilinear forms.

Tài liệu tham khảo

Frobenius G, Uber die mit einer Matrix vertauschbaren matrizen, Sitzungsber. Preuss. Akad. Wiss. (1910) pp. 3–15 Gongopadhyay K and Kulkarni R S, On the existence of an invariant non-degenerate bilinear form under a linear map, Linear Algebra Appl. 434 (2011) 89–103 Gow R and Laffey T J, Pairs of alternating forms and products of two skew-symmetric matrices, Linear Algebra Appl. 63 (1984) 119–132 Kulkarni R S, Dynamics of linear and affine maps, Asian J. Math. 12(3) (2008) 321–344 Pazzis C S, When does a linear map belong to at least one orthogonal or symplectic group? Linear Algebra Appl. 436(5) (2012) 1385–1405 Sergeichuk V V, Classification problems for systems of forms and linear map, Izv. Akad. Nauk SSSR Ser. Mat. 51(6) (1987) 1170–1190 Stenzel H, Uber die Darstellbarkeit einer Matrix als Produkt von zwei symmetrischer matrizen, als Produkt von zwei alternierenden matrizen und als Produkt von einer symmetrischen und alternierenden matrix, Mat. Zeitschrift 15 (1922) 1–25