Souslin algebra embeddings
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abraham U., Shelah S.: A $${{\Delta}^2_2}$$ well-order of the reals and incompactness of L(Q MM). Ann. Pure Appl. Log. 59, 1–32 (1993)
Bekkali, M., Bonnet, R.: Rigid boolean algebras. In: Monk, Bonnet [20], chap. 17, pp. 637–678
Devlin K.J.: Constructibility, Perspectives in Mathematical Logic. Springer, New York (1984)
Devlin, K.J., Johnsbr H.: The souslin problem, Lecture Notes in Mathematics, vol. 405. Springer, New York (1974)
Džamonja M., Hrušák M., Moore J.T.: Parametrized $${\diamondsuit}$$ principles. Trans. AMS 356(6), 2281–2306 (2004)
Farah I.: Embedding partially ordered sets into ω ω. Fundam. Math. 151(1), 53–95 (1996)
Fremlin, D.H.: Problems. published online, the actual version of the list is available on the site http://www.essex.ac.uk/maths/staff/fremlin/problems.htm . A previous version of the list (including Problem FW) can be found in the web archive. To access this entry, simply add the following as a prefix to the above URL: http://web.archive.org/web/20030421141808/ (2003)
Fuchs G., Hamkins J.D.: Degrees of rigidity for Souslin trees. J. Symbolic Log. 74(2), 423–454 (2009)
Jech T.: Automorphisms of ω 1-trees. Trans. AMS 173, 57–70 (1972)
Jech T.: Set Theory, 2nd edn. Perspectives in Mathematical Logic. Springer, New York (1997)
Jech T.: Set Theory, the Third Millenium Edition, Revised and Expanded Edn. Springer Monographs in Mathematics. Springer, New York (2003)
Jensen, R.B.: The Generic Kurepa Hypothesis I + II. Handwritten notes
Kechris A.S.: Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol 156. Springer, New York (1995)
Koppelberg S.: Handbook of Boolean Algebras, vol. 1. North-Holland, Amsterdam (1989)
Koppelberg S., Monk J.D.: Homogeneous Boolean algebras with very nonsymmetric subalgebras. Notre Dame J. Formal Log. 24(3), 353–356 (1983)
Kurepa, Đ.: Ensembles ordonnés et ramifiés. Publications Mathématiques de l’Univiersité de Belgrade 4:1–138 Republished in: A. Ivić, Z. Mamuzić, Ž. Majajlović and S. Todorčević (eds.) Selected Papers of Đuro Kurepa. SANU 1996 (1935)
Larson P.: An $${\mathbb{S}_{\rm max}}$$ variation for one Souslin tree. J. Symbolic Log. 64(1), 81–98 (1999)
Monk, J.D., Bonnet, R. (eds.): Handbook of Boolean Algebras, vol. 2. North-Holland (1989)
Scharfenberger-Fabian, G.: Subalgebras of small Souslin algebras and Maximal chains in Souslin algebras. Ph.D. thesis, Freie Universität Berlin. Published online, static URL: http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000005206 (2008)
Scharfenberger-Fabian, G.: Chain homogeneous Souslin algebras. Submitted for publication in the Mathematical Logic Quarterly (2010)
Scharfenberger-Fabian, G.: Optimal matrices of partitions and an application to souslin trees. Accepted for publication in Fundamenta Mathematicae (2010)
Shelah S., Zapletal J.: Canonical models for $${\aleph_1}$$ -combinatorics. Ann. Pure Appl. Log. 98, 217–259 (1999)
Štěpánek, P., Rubin, M.: Homogeneous Boolean Algebras, chap. 18, pp. 679–715. Vol. 2 of Monk and Bonnet [20] (1989)