Sous-groupes discrets des groupes p-adiques de rang un et arbres de Bruhat-Tits

Springer Science and Business Media LLC - Tập 93 - Trang 195-219 - 1996
Francis M. Choucroun1
1Mathématique, Université Paris-Sud, Orsay-Cedex, France

Tóm tắt

Classically a colored tree is associated to any p-adic groups of rank one. For some of these, subgroups acting simply transitively on vertices of given color are constructed. In fewer case, the same can be done for edges.

Tài liệu tham khảo

[B] H. Bass,Covering theory for graphs of groups, Journal of Pure and Applied Algebra89 (1993), 3–47. [B-K] H. Bass and R. Kulkarni,Uniform tree latices, Journal of the American Mathematical Society3 (1990), 843–902. [B-H] A. Borel and G. Harder,Existence of discrete cocompact subgroups of reductive groups over local fields, Journal für die reine und angewandte Mathematik298 (1978), 53–64. [B-T 1 & 2] F. Bruhat et J. Tits,Schémas en groupes et immeubles des groupes classiques sur un corps local, 1re partie: le groupe linéaire général, Bulletin de la Société Mathématique de France112 (1984), 259–301; 2e partie: groupes unitaires Bulletin de la Société Mathématique de France115 (1987), 141–195. [C-1] F. Choucroun,Analyse harmonique sur le groupe des automorphismes d’un arbre homogène et applications aux groupes libres, Comptes Rendus de l’Académie des Sciences, Paris296 (1983), 585–588. [C-2] F. Choucroun,Groupes opérant simplement transitivement sur un arbre homogène et plongements dans PGL2(k), Comptes Rendus de l’Académie des Sciences, Paris298 (1984), 313–315. [C-3] F. Choucroun,Analyse harmonique des groupes d’automorphismes d’arbre de Bruhat-Tits, Mémoires de la Societé Mathématique de France, supplément n058 au bulletin122 (1994), fasc. 3. [F-P] A. Figa-Talamanca and M. A. Picardello,Restriction of spherical representation of PGL2 (ℚ P )to a discrete subgroup, Proceedings of the American Mathematical Society91 (1983), 405–408. [I] Y. Ihara,Dicrete subgroup of PGL2(k p), Proceedings of Symposia in Pure Mathematics9 (1966), 272–278. [J] N. Jacobson,Basic Algebra II, Freeman and Company, San Francisco, 1989. [L-1] A. Lubotzky,Trees and discrete subgroups of Lie groups over local fields, Bulletin of the American Mathematical Society20 (1989), 27–30. [L-2] A. Lubotzky,Lattices in rank one Lie groups over local fields, Geometric and Functional Analysis1 (1991), 406–431. [L-3] A. Lubotzky,Lattices of minimal covolume in SL2:a non-archimedian analogue of Siegel’s theorem μ ≥ π/21, Journal of the American Mathematical Society3 (1990), 961–975. [M-W] B. Mohar and W. Woess,A survey on spectra of infinite graphs, The Bulletin of the London Mathematical Society21 (1989), 209–234. [S] J. P. Serre,Arbres, amalgames, SL2, Astérisque46 (1977). [T] J. Tits,Reductive groups over local fields, Proceedings of Symposia in Pure Mathematics33 (1979), 29–69. [VdW] B. L. van der Waerden,Grouppen von linearen transformationen, Chelsea Publ. Co., New York, 1948.