Source-configured symmetry-broken hyperbolic polaritons

eLight - Tập 3 - Trang 1-11 - 2023
Caixing Hu1,2, Tian Sun1,2, Ying Zeng1,2, Weiliang Ma1,2, Zhigao Dai3, Xiaosheng Yang1,2, Xinliang Zhang1,2,4, Peining Li1,2
1Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic information, Huazhong University of Science and Technology, Wuhan, China
2Optics Valley Laboratory, Hubei, China
3Faculty of Materials Science and Chemistry, Engineering Research Center of NanoGeomaterials of Ministry of Education, China University of Geosciences, Wuhan, China
4Xidian University, Xi’an, China

Tóm tắt

Polaritons are quasi-particles that combine light with matter, enabling precise control of light at deep subwavelength scales. The excitation and propagation of polaritons are closely linked to the structural symmetries of the host materials, resulting in symmetrical polariton propagation in high-symmetry materials. However, in low-symmetry crystals, symmetry-broken polaritons exist, exhibiting enhanced directionality of polariton propagation for nanoscale light manipulation and steering. Here, we theoretically propose and experimentally demonstrate the existence of symmetry-broken polaritons, with hyperbolic dispersion, in a high-symmetry crystal. We show that an optical disk-antenna positioned on the crystal surface can act as an in-plane polarized excitation source, enabling dynamic tailoring of the asymmetry of hyperbolic polariton propagation in the high-symmetry crystal over a broad frequency range. Additionally, we provide an intuitive analysis model that predicts the condition under which the asymmetric polaritonic behavior is maximized, which is corroborated by our simulations and experiments. Our results demonstrate that the directionality of polariton propagation can be conveniently configured, independent of the structure symmetry of crystals, providing a tuning knob for the polaritonic response and in-plane anisotropy in nanophotonic applications.

Tài liệu tham khảo

Basov, D. et al. Polaritons in van der Waals materials. Science 354, aag1992 (2016). S. Dai et al., Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017) G. Hu et al., Phonon polaritons and hyperbolic response in van der Waals materials. Adv. Opt. Mater. 8, 1901393 (2020) T. Low et al., Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017) S. Dai et al., Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014) G. Hu et al., Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020) W. Ma et al., Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021) W. Ma et al., In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018) Q. Zhang et al., Hybridized hyperbolic surface phonon polaritons at α-MoO3 and polar dielectric interfaces. Nano Lett. 21, 3112–3119 (2021) Z. Dai et al., Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat. Commun. 11, 6086 (2020) J.D. Caldwell et al., Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015) Z. Dai et al., Artificial Metaphotonics Born Naturally in Two Dimensions. Chem. Rev. 120, 6197 (2020) D.Y. Fedyanin et al., Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits. Nano Lett. 12, 2459–2463 (2012) S.S. Kou et al., On-chip photonic Fourier transform with surface plasmon polaritons. Light Sci. Appl. 5, e16034 (2016) F.P. Mezzapesa et al., Chip-Scale Terahertz Frequency Combs through Integrated Intersubband Polariton Bleaching. Laser Photonics Rev. 15, 2000575 (2021) Z. Guo et al., Hyperbolic metamaterials: From dispersion manipulation to applications. J. Appl. Phys. 127, 071101 (2020) L. Ferrari et al., Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 40, 1–40 (2015) Lee, D. et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight 2, 1–23 (2022). N.C. Passler et al., Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022) Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol., 18, 64–70 (2023) S. Xue et al., Vortex-induced quasi-shear polaritons. Advanced Photonics Nexus 2, 015001 (2023) Matson, J. et al. Controlling the Propagation Asymmetry of Hyperbolic Shear Polaritons in Beta-Gallium Oxide. Research Square (2023). https://doi.org/10.21203/rs.3.rs-2365178/v1 M.F. Picardi et al., Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking. Phys. Rev. Lett. 120, 117402 (2018) K.Y. Bliokh et al., Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014) Neugebauer, M. et al. Emission of circularly polarized light by a linear dipole. Sci. Adv. 5, eaav7588 (2019). Wang, M. et al. Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. eLight 2, 12 (2022). P.V. Kapitanova et al., Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat. Commun. 5, 3226 (2014) F.J. Rodríguez-Fortuño et al., Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013) M.F. Picardi et al., Unidirectional evanescent-wave coupling from circularly polarized electric and magnetic dipoles: An angular spectrum approach. Phys. Rev. B 95, 245416 (2017) D.M. Di Paola et al., Ultrafast-nonlinear ultraviolet pulse modulation in an AlInGaN polariton waveguide operating up to room temperature. Nat. Commun. 12, 3504 (2021) J. Gosciniak et al., Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides. J. Lightwave Technol. 29, 1473–1481 (2011) O. Jamadi et al., Edge-emitting polariton laser and amplifier based on a ZnO waveguide. Light Sci. Appl. 7, 82 (2018) Y. Zeng et al., Tailoring Topological Transitions of Anisotropic Polaritons by Interface Engineering in Biaxial Crystals. Nano. Lett. 22, 4260 (2022) I. Söllner et al., Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015) P. Li et al., Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016) M. Wang et al., Programmable controls of multiple modes of spoof surface plasmon polaritons to reach reconfigurable plasmonic devices. Adv. Mater. Technol. 4, 1800603 (2019) Z. Guo, Y. Long, H. Jiang, J. Ren, H.J.A.P. Chen, Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Adv. Photonics 3, 036001 (2021) C. Sayrin et al., Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015)