Source apportionment of metallic elements in urban atmospheric particulate matter and assessment of its water-soluble fraction toxicity

Springer Science and Business Media LLC - Tập 27 Số 11 - Trang 12202-12214 - 2020
Darlan Daniel Alves1, Roberta Plangg Riegel1, Cláudia Regina Klauck1, Alessa Maria Ceratti1, Jéssica Hansen2, Laura Meneguzzi Cansi2, Simone Andréa Pozza3, Daniela Müller de Quevedo1, Daniela Montanari Migliavacca Osório1
1Postgraduate Program in Environmental Quality, Feevale University, ERS 239, 2755, Novo Hamburgo, Rio Grande do Sul, 93525-075, Brazil
2Institute of Exact and Technological Sciences, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
3School of Technology, University of Campinas (Unicamp), Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, 13083-970, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abiye OE, Obioh IB, Ezeh GC (2013) Elemental characterization of urban particulates at receptor locations in Abuja, north-Central Nigeria. Atmos Environ 81:695–701. https://doi.org/10.1016/j.atmosenv.2013.08.042

Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30:1009–1017. https://doi.org/10.1016/j.envint.2004.04.004

Alleman LY, Lamaison L, Perdrix E, Robache A, Galloo JC (2010) PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos Res 96:612–625. https://doi.org/10.1016/j.atmosres.2010.02.008

Alves DD, Backes E, Rocha-Uriartt L, Plangg Riegel R, Quevedo DM, Schmitt JL, Costa GM, Osório DMM (2018) Chemical composition of rainwater in the Sinos River Basin, Southern Brazil: a source apportionment study. Environ Sci Pollut Res Int 25:24150–24161. https://doi.org/10.1007/s11356-018-2505-1

Bagur-González MG, Estepa-Molina C, Martín-Peinado F, Morales-Ruano S (2011) Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J Soils Sediments 11:281–289. https://doi.org/10.1007/s11368-010-0285-4

Charles J, Sancey B, Morin-Crini N, Badot PM, Degiorgi F, Trunfio G, Crini G (2011) Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicol Environ Saf 74(7):2057–2064. https://doi.org/10.1016/j.ecoenv.2011.07.025

Cuypers A, Keunen E, Bohler S, Jozefczak M, Opdenakker K, Gielen H, Vercampt H, An B, Schellingen K, Vangronsveld J, Remans T (2012) Cadmium and copper stress induce a cellular oxidative challenge leading to damage versus signalling. In: Gupta D, Sandalio L (eds) Metal toxicity in plants: perception, signaling and remediation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22081-4_4

EPA (United States Environmental Protection Agency) (1996) Ecological Effects Test Guidelines: OPPTS 850.4200: Seed Germination/Root Elongation Toxicity Test. EPA, Washington, DC, EPA 712-C-96-154. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100RF5I.PDF?Dockey=P100RF5I.PDF. Accessed 4 Feb 2019

EPA (United States Environmental Protection Agency) (2014) EPA Positive Matrix Factorization (PMF) 5.0: fundamentals and user guide. Office of Research and Development, Washington. https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf. Accessed 4 Feb 2019

FEPAM (FundaçãoEstadual de Proteção Ambiental Henrique Luis Roessler) (2019) Water quality of the Sinos River basin. http://www.fepam.rs.gov.br/qualidade/qualidade_sinos/sinos.asp. Accessed 4 Feb 2019

Fodor E, Szabó-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 14:787–792. https://doi.org/10.1016/S0176-1617(11)81418-5

Gajghate DG, Bhanarkar AD (2005) Characterisation of particulate matter for toxic metals in ambient air of Kochi city, India. Environ Monit Assess 102:119–129. https://doi.org/10.1007/s10661-005-4535-7

Gao J, Tian H, Cheng K, Lu L, Wang Y, Wu Y, Zhu C, Liu K, Zhou J, Liu X, Chen J, Hao J (2014) Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmos Environ 99:257–265. https://doi.org/10.1016/j.atmosenv.2014.08.081

Gietl JK, Lawrence R, Thorpe AJ, Harrison RM (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos Environ 44:141–146. https://doi.org/10.1016/j.atmosenv.2009.10.016

Hieu NT, Lee BK (2010) Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmos Res 982(4):526–537. https://doi.org/10.1016/j.atmosres.2010.08.019

Hong YM, Lee BK, Park KJ, Kang MH, Jung YR, Lee DS, Kim MG (2002) Atmospheric nitrogen and sulfur containing compounds for three sites of South Korea. Atmos Environ 36:3485–3494. https://doi.org/10.1016/S1352-2310(02)00289-3

Hopke PK, Xie Y, Raunemaa T, Biegalski S, Landsberger S, Maenhaut W, Artaxo P, Cohen D (1997) Characterization of the gent stacked filter unit PM10 sampler. Aerosol Sci Technol 27:726–735. https://doi.org/10.1080/02786829708965507

Hopke PK, Kane C, Utell MJ, Chalupa DC, Kumar P, Ling F, Gardner B, Rich DQ (2015) Triggering of myocardial infarction by increased ambient fine particle concentration: effect modification by source direction. Environ Res 142:374–379. https://doi.org/10.1016/j.envres.2015.06.037

Hou J, Liu GN, Xue W, Fu WJ, Liang BC, Liu XH (2014) Seed germination, root elongation, root-tip mitosis, and micronucleus induction of five crop plants exposed to chromium in fluvo-aquic soil. Environ Toxicol Chem 33(3):671–676. https://doi.org/10.1002/etc.2489

IBGE (Brazilian Institute of Geography and Statistics) (2019a) Canoas. https://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=430460&search=rio-grande-do-sul|canoas. Accessed 4 Feb 2019

IBGE (Brazilian Institute of Geography and Statistics) (2019b) São Leopoldo. Accessed 4 Feb 2019. http://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=431870&search=rio-grande-do-sul|sao-leopoldo

Illi JC, Vancetta T, Alves DD, Osório DMM, Bianchin L, De Quevedo DM, Juchem F (2017) Integrated assessment of air pollution by metals and source apportionment using ryegrass (Loliummultiflorum Lam.) in southern Brazil. Environ Sci Pollut Res Int 24(3):2790–2803. https://doi.org/10.1007/s11356-016-8041-y

Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press LLC, Boca Raton

Kar S, Maity JP, Samal AC, Santra SC (2010) Metallic components of traffic induced urban aerosol, their spatial variation, and source apportionment. Environ Monit Assess 168:561–574. https://doi.org/10.1007/s10661-009-1134-z

Laden F, Schwartz J, Speizer FE, Dockery DW (2006) Reduction in fine particulate air pollution and mortality extended follow-up of the harvard six cities study. Am J Respir Crit Care Med 173(6):667–672. https://doi.org/10.1164/rccm.200503-443OC

Li H, Hopke PK, Liu X, Du X, Li F (2015) Application of positive matrix factorization to source apportionment of surface water quality of the Daliao River basin, Northeast China. Environ Monit Assess 187:80. https://doi.org/10.1007/s10661-014-4154-2

Lim JM, Lee JH, Moon JH, Chung YS, Kim KH (2010) Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmos Res 96:53–64. https://doi.org/10.1016/j.atmosres.2009.11.013

Loyola J, Arbilla G, Quiterio SL, Escaleira V, Minho AS (2012) Trace metals in theurbanaerosolsof Rio de Janeiro city. J Braz Chem Soc 23:628–638. https://doi.org/10.1590/S0103-50532012000400007

Maenhaut W, Francois F, Cafmeyer J (1993) The “gent” stacked filter unit sampler for the collection of atmospheric aerosols in two size fractions: description and instructions for installation and use. Coordinated research Programme: CRP E4.10.08. International Atomic Energy Agency, Vienna, pp. 249–263

Melo LCA, Silva EB, Alleoni LRF (2014) Transfer of cadmium and barium from soil to crops grown in tropical soils. Rev Bras Ciên Solo 38(6):1939–1949. https://doi.org/10.1590/S0100-06832014000600028

Migliavacca DM, Teixeira EC, Gervasoni F, Conceição RV, Rodriguez MTR (2012) Metallic elements and isotope of Pb in wet precipitation in urban area, South America. Atmos Res 107:106–114. https://doi.org/10.1016/j.atmosres.2012.01.001

Monteiro FA, Nogueirol RC, Melo LCA, Artur AG, Rocha F (2011) Effect of barium on growth and macronutrient nutrition in Tanzania guineagrass grown in nutrient solution. Commun Soil Sci Plan 42(13):1510–1521. https://doi.org/10.1080/00103624.2011.581725

Pope CA III (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108(Suppl 4):713–723. https://doi.org/10.1289/ehp.108-1637679

Reff A, Eberly SI, Bhave PV (2007) Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. J Air Waste Manag Assoc 57:146–154. https://doi.org/10.1080/10473289.2007.10465319

Romero-Puertas MC, Ortega-Galisteo AP, Rodríguez-Serrano M, Sandalio LM (2012) Insights into cadmium toxicity: reactive oxygen and nitrogen species function. In: Gupta D, Sandalio L (eds) Metal toxicity in plants: perception, signaling and remediation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22081-4_5

Schwartz J, Dockery DW, Neas LM (1996) Is daily mortality associated specifically with fine particles? J Air Waste Manage Assoc 46(10):927–939. https://doi.org/10.1080/10473289.1996.10467528

Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, Hoboken

Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400:270–282. https://doi.org/10.1016/j.scitotenv.2008.06.007

Tian HZ, Lu L, Cheng K, Hao JM, Zhao D, Wang Y, Jia WX, Qiu PP (2012) Anthropogenic atmospheric nickel emissions and its distribution characteristics in China. Sci Total Environ 417-418:148–157. https://doi.org/10.1016/j.scitotenv.2011.11.069

Xu HM, Cao JJ, Ho KF, Ding H, Han YM, Wang GH, Chow JC, Watson JG, Khol SD, Qiang J, Li WT (2012) Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an, China. Atmos Environ 46:217–224. https://doi.org/10.1016/j.atmosenv.2011.09.078

Wang X, Sun C, Gao S, Wang L, Shuokui H (2001) Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44(8):1711–1721. https://doi.org/10.1016/S0045-6535(00)00520-8

Watson JG (2002) Visibility: science and regulation. J Air Waste Manage Assoc 52:628–713. https://doi.org/10.1080/10473289.2002.10470813

Wu YS, Fang GC, Lee WJ, Lee JF, Chang CC, Lee CZ (2007) A review of atmospheric fine particulate matter and its associated trace metalpollutants in Asian countries during the period 1995–2005. J Hazard Mater 143:511–515. https://doi.org/10.1016/j.jhazmat.2006.09.066

Xiong T, Zhang T, Dumat C, Sobanska S, Dappe V, Shahid M, Xian Y, Li X, Li S (2019) Airborne foliar transfer of particular metals in Lactuca sativa L.: translocation, phytotoxicity, and bioaccessibility. Environ Sci Pollut Res 26:20064. https://doi.org/10.1007/s11356-018-3084-x

Yatkin S, Bayram A (2007) Elemental composition and sources of particulate matter in the ambient air of a metropolitan city. Atmos Res 85:126–139. https://doi.org/10.1016/j.atmosres.2006.12.002

Zhang N, Cao J, He Y, Xiao S (2014) Chemical composition of rainwater at Lijiang on the Southeast Tibetan Plateau: influences from various air mass sources. J Atmos Chem 71:157–174. https://doi.org/10.1007/s10874-014-9288-7