Tái cấu trúc nguồn động đất và sóng thần ở Tây Sulawesi, Indonesia năm 1969

Geofisica pura e applicata - Tập 180 - Trang 1765-1783 - 2022
Ignatius R. Pranantyo1,2, Athanasius Cipta3, Hasbi A. Shiddiqi4, Toshitaka Baba5, Kentaro Imai6
1Department of Civil Engineering, Brunel University London, London, UK
2REASK UK Ltd., London, UK
3Geological Agency, Bandung, Indonesia
4Department of Earth Science, University of Bergen, Bergen, Norway
5Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
6Research Institute for Marine Geodynamics Research and Development, Center for Earthquake and Tsunami Forecasting, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Tóm tắt

Hòn đảo Sulawesi, Indonesia, nằm trong một khu vực phức tạp và hoạt động kiến tạo tích cực, đã trải qua nhiều trận sóng thần trong quá khứ. Một trong những sự kiện động đất và sóng thần lớn là trận động đất xảy ra vào ngày 23 tháng 2 năm 1969, đã tấn công khu vực Majene ở miền tây hòn đảo Sulawesi. Phân tích các tài liệu lịch sử cho thấy trận động đất có độ lớn Mw 7.0 đã gây ra cường độ mạnh lên tới VIII theo thang độ Mercalli đã sửa đổi. Trận động đất đã được theo sau bởi một trận sóng thần cao bất thường lên đến 4 m, nhanh chóng suy giảm trong vòng 25 km từ điểm quan sát cao nhất. Phân tích tâm chấn và cơ chế động đất đã xác nhận đây là trận động đất ở vùng nội địa với cơ chế đẩy. Mô hình chuyển động mặt đất có khả năng tái tạo được cường độ động đất nhưng các kịch bản động đất không thể tái hiện được các quan sát về sóng thần. Một giải pháp hợp lý để giải thích báo cáo sóng thần là từ một kịch bản kết hợp của động đất và sụt lún khối lượng dưới nước khoảng 0.5 km³.

Từ khóa

#động đất #sóng thần #Sulawesi #Indonesia #cơ chế đẩy #mô hình chuyển động mặt đất

Tài liệu tham khảo

Aida, I. (1978). Reliability of a tsunami source model derived from fault parameters. Journal of Physics of the Earth, 26(1), 57–73. https://doi.org/10.4294/jpe1952.26.57. Baba, T., Gon, Y., Imai, K., Yamashita, K., Matsuno, T., Hayashi, M., & Ichihara, H. (2019). Modeling of a dispersive tsunami caused by a submarine landslide based on detailed bathymetry of the continental slope in the Nankai trough, southwest Japan. Tectonophysics, 768, 228182. https://doi.org/10.1016/j.tecto.2019.228182. Baba, T., Takahashi, N., Kaneda, Y., Ando, K., Matsuoka, D., & Kato, T. (2015). Parallel implementation of dispersive tsunami wave modeling with a nesting algorithm for the 2011 Tohoku tsunami. Pure and Applied Geophysics, 172(12), 3455–3472. https://doi.org/10.1007/s00024-015-1049-2. Bellier, O., Sébrier, M., Seward, D., Beaudouin, T., Villeneuve, M., & Putranto, E. (2006). Fission track and fault kinematics analyses for new insight into the Late Cenozoic tectonic regime changes in West-Central Sulawesi (Indonesia). Tectonophysics, 413(3–4), 201–220. https://doi.org/10.1016/j.tecto.2005.10.036. Bergman, S. C., Coffield, D. Q., Talbot, J. P., & Garrard, R. A. (1996). Tertiary tectonic and magmatic evolution of western Sulawesi and the Makassar Strait, Indonesia: Evidence for a Miocene continent-continent collision. Geological Society Special Publication, 106(1), 391–429. https://doi.org/10.1144/GSL.SP.1996.106.01.25. Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems,4(3). https://doi.org/10.1029/2001GC000252. Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-west2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthq Spectra, 30(3), 1057–1085. https://doi.org/10.1193/070113EQS184M. Brackenridge, R. E., Nicholson, U., Sapiie, B., Stow, D., & Tappin, D. R. (2020). Indonesian Throughflow as a preconditioning mechanism for submarine landslides in the Makassar Strait. Geological Society, London, Special Publications,500. https://doi.org/10.1144/SP500-2019-171 Cipta, A., Rudyanto, A., Afif, H., Robiana, R., Solikhin, A., Omang, A., & Supartoyo, Hidayati S. (2020). Unearthing the buried Palu–Koro Fault and the pattern of damage caused by the 2018 Sulawesi earthquake using HVSR inversion. Geol Soc Spec Publ pp SP501–2019–70. https://doi.org/10.1144/SP501-2019-70 Cipta, A., Robiana, R., Griffin, J., Horspool, N., Hidayati, S., & Cummins, P. R. (2017). A probabilistic seismic hazard assessment for Sulawesi, Indonesia. Geological Society Special Publication, 441(1), 133–152. https://doi.org/10.1144/SP441.6. Dowrick, D. J., Hancox, G. T., Perrin, N. D., & Dellow, G. D. (2008). The modified mercalli intensity scale. Bulletin of the New Zealand National Society for Earthquake Engineering, 41(3), 193–205. https://doi.org/10.5459/bnzsee.41.3.193-205. Engdahl, E. R., Giacomo, D. D., Sakarya, B., Gkarlaouni, C. G., Harris, J., & Storchak, D. A. (2020). ISC-EHB 1964–2016, an improved data set for studies of earth structure and global seismicity. Earth and Space Science,7(1). https://doi.org/10.1029/2019EA000897. Fikrie, M., & Hardiansya, A. (2018). Lembong tallu dan gempa bertubi-tubi di Mamasa. https://lokadata.id/artikel/lembong-tallu-dan-gempa-bertubi-tubi-di-mamasa, available on https://lokadata.id/artikel/lembong-tallu-dan-gempa-bertubi-tubi-di-mamasa, last accessed 26 February 2021. Fitch, T. J. (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific. Journal of Geophysical Research (1896–1977), 77(23), 4432–4460. https://doi.org/10.1029/JB077i023p04432. Fritz, H. M., Kongko, W., Moore, A., McAdoo, B., Goff, J., Harbitz, C., et al. (2007). Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters,34(12). https://doi.org/10.1029/2007GL029404. Gerardi, F., Barbano, M. S., Martini, P. M. D., & Pantosti, D. (2008). Discrimination of tsunami sources (earthquake versus landslide) on the basis of historical data in eastern Sicily and southern Calabria. Bulletin of the Seismological Society of America, 98(6), 2795–2805. https://doi.org/10.1785/0120070192. Hall, R. (2011). Australia–SE Asia collision: Plate tectonics and crustal flow. Geological Society, London, Special Publications, 355(1), 75–109. https://doi.org/10.1144/SP355.5. Hamilton, W. B. (1979). Tectonics of the Indonesian region (Vol. 1078). US Government Printing Office. Hardebeck, J. L. (2002). A new method for determining first-motion focal mechanisms. Bulletin of the Seismological Society of America, 92(6), 2264–2276. https://doi.org/10.1785/0120010200. Havskov, J., & Ottemoller, L. (1999). SeisAn earthquake analysis software. Seismological Research Letters, 70(5), 532–534. https://doi.org/10.1785/gssrl.70.5.532. Havskov, J., Voss, P. H., & Ottemöller, L. (2020). Seismological observatory software: 30 year of SEISAN. Seismological Research Letters, 91(3), 1846–1852. https://doi.org/10.1785/0220190313. Hurukawa, N., & Maung, P. M. (2011). Two seismic gaps on the Sagaing Fault, Myanmar, derived from relocation of historical earthquakes since 1918d. Geophysical Research Letters, 38(1), n/a. https://doi.org/10.1029/2010GL046099. Imamura, F., & Imteaz, M. (1995). Long waves in two-layers: Governing equations and numerical model. Sci of Tsunami Hazards, 13, 3–24. International Tsunami Information Center. (1969a). Makassar Strait earthquake and tsunami - February 23, 1969. In: International Tsunami Information Center Newsletter, vol II, IOC-UNESCO, Hawaii, USA, available on http://itic.ioc-unesco.org/images/stories/products_and_services/newsletter/1960-1969/1969/1969_Apr.pdf, last Accessed 26 February 2021. International Tsunami Information Center. (1969b). Makassar Strait earthquake and tsunami of February 23, 1969 - indonesia. In: International Tsunami Information Center Newsletter, vol II, IOC-UNESCO, Hawaii, USA, available on http://itic.ioc-unesco.org/images/stories/products_and_services/newsletter/1960-1969/1969/1969_July.pdf, last Accessed 26 February 2021. Jarvis, A., Reuter, H., Nelson, A., & Guevara, E. (2008). Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database http://srtm.csi.cgiar.org. Kajiura, K. (1963). The leading wave of a tsunami. Bulletin of the Earthquake Research Institute, 41(4), 535–571. Kennet, B. L. N. (1991). IASPEI 1991 seismological tables. Terra Nova, 3(2), 122–122. https://doi.org/10.1111/j.1365-3121.1991.tb00863.x. Latief, H., Puspito, N. T., & Imamura, F. (2000). Tsunami catalog and zones in Indonesia. Journal of Natural Disaster Science, 22(1), 25–43. Lentas, K. (2017). Towards routine determination of focal mechanisms obtained from first motion p-wave arrivals. Geophysical Journal International, 212(3), 1665–1686. https://doi.org/10.1093/gji/ggx503. Matsuoka, M., Wakamatsu, K., Fujimotio, K., & Midorikawa, S. (2006). Average shear-wave velocity mapping using Japan engineering geomorphologic clasification map. Earthquake Engineering and Structural Dynamics, 23(1), 57s–68s. https://doi.org/10.2208/jsceseee.23.57s. Nugraha, H. D., Jackson, C. A. L., Johnson, H. D., & Hodgson, D. M. (2020). Lateral variability in strain along a mass-transport deposit (MTD) toewall: A case study from the Makassar Strait, offshore Indonesia. Journal of the Geological Society, pp jgs2020–071. https://doi.org/10.1144/jgs2020-071. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154. Okal, E. A., & Synolakis, C. E. (2004). Source discriminants for near-field tsunamis. Geophysical Journal International, 158(3), 899–912. https://doi.org/10.1111/j.1365-246x.2004.02347.x. Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., et al. (2014). OpenQuake engine: An open hazard (and risk) software for the Global Earthquake Model. Seismological Research Letters, 85(3), 692–702. https://doi.org/10.1785/0220130087. Peterson, J. R., & Hutt, C. R. (2014). World-wide standardized seismograph network: A data users guide. https://doi.org/10.3133/ofr20141218 Prasetya, G., De Lange, W., & Healy, T. (2001). The Makassar Strait tsunamigenic region, Indonesia. Natural Hazards, 24(3), 295–307. https://doi.org/10.1023/a:1012297413280. Pusat Studi Gempa Nasional. (2018). Peta sumber dan bahaya gempa indonesia tahun 2017. Tech. rep., Ministry of Public Works of Indonesia. Available on https://simantu.pu.go.id/content/?id=3605 in Bahasa Indonesia (last Accessed 26 February 2021). Rangin, C., Pichon, X. L., Mazzotti, S., Pubellier, M., Chamot-Rooke, N., Aurelio, M., et al. (1999). Plate convergence measured by GPS across the Sundaland/Philippine Sea Plate deformed boundary: The Philippines and eastern Indonesia. Geophysical Journal International, 139(2), 296–316. https://doi.org/10.1046/j.1365-246x.1999.00969.x. Reasenberg, P., & Oppenheimer, D. (1985). Fpfit, fpplot and fppage: Fortran computer programs for calculating and displaying earthquake fault-plane solutions. Technology Reports. https://doi.org/10.3133/ofr85739. Rudyanto, A. (2014). Development of strong-motion database for the Sumatra-Java region. PhD thesis, Research School of Earth Sciences, the Australian National University, Canberra, Australia. https://doi.org/10.25911/5c6e706d3ca39. http://hdl.handle.net/1885/155705 Satake, K., Hirata, K., Yamaki, S., & Tanioka, Y. (2006). Re-estimation of tsunami source of the 1952 Tokachi-oki earthquake. Earth Planets Space, 58(5), 535–542. https://doi.org/10.1186/BF03351951. Satyana, A. H., Faulin, T., & Mulyati, S. N. (2011). Tectonic evolution of Sulawesi area: Implications for proven and prospective petroleum plays. In Proceeding of The 36th HAGI and 40th IAGI 2011 Annual Convention and Exhibition, Makassar. Silver, E. A., McCaffrey, R., Joyodiwiryo, Y., & Stevens, S. (1983). Ophiolite emplacement by collision between the Sula Platform and the Sulawesi Island Arc, Indonesia. The Journal of Geophysical Research: Solid Earth, 88(B11), 9419–9435. https://doi.org/10.1029/JB088iB11p09419. Snoke, J. A. (2003). Focmec: FOCal MEChanism Determinations. In W. H. Lee, H. Kanamori, P. C. Jennings, & C. Kisslinger (Eds.), International handbook of earthquake and engineering seismology, part b, international geophysics (Vol. 81, pp. 1629–1630). Academic Press. https://doi.org/10.1016/S0074-6142(03)80291-7. Soetardjo, Untung M., Arnold, E., Soetadi, R., Ismail, S., & Kertapati, E. K. (1985). Series on Seismology Volume V: Indonesia. U.S. Geological survey. Soloviev, S., Go, C., & Kim, K. (1992). Catalog of tsunamis in the Pacific. Academy of Sciences of the USSR, Moscow, translated from Russian by Amerind Publishing Co. Pvt. Ltd., New Delhi (1988). Synolakis, C. E. (1991). Tsunami runup on steep slopes: How good linear theory really is. In Tsunami Hazard (pp. 221–234). Springer. https://doi.org/10.1007/978-94-011-3362-3_8 ten Brink, U., Lee, H., Geist, E., & Twichell, D. (2009). Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes. Marine Geology, 264, 65–73. https://doi.org/10.1016/j.margeo.2008.05.011. Thingbaijam, K. K. S., Mai, P. M., & Goda, K. (2017). New empirical earthquake source-scaling laws. Bulletin of the Seismological Society of America, 107(5), 2225–2246. https://doi.org/10.1785/0120170017. Tinti, S., Armigliato, A., Manucci, A., Pagnoni, G., Zaniboni, F., Yalçiner, A. C., & Altinok, Y. (2006). The generating mechanisms of the August 17, 1999 \({\dot{{\rm i}}}\)zmit bay (turkey) tsunami: Regional (tectonic) and local (mass instabilities) causes. Marine Geology, 225(1–4), 311–330. https://doi.org/10.1016/j.margeo.2005.09.010. Tsuji, Y., Matsutomi, H., Imamura, F., Takeo, M., Kawata, Y., Matsuyama, M., et al. (1995). Damage to coastal villages due to the 1992 flores island earthquake tsunami. Pure and Applied Geophysics PAGEOPH, 144(3–4), 481–524. https://doi.org/10.1007/BF00874380. van Leeuwen, T., & Pieters, P. E. (2012). Mineral deposits of Sulawesi. In: Proceedings of The Sulawesi Mineral Resources 2011, Seminar MGEI-IAGI, 28–29 November 2011, Manado, Indonesia. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2. Wald, D. J., Quitoriano, V., Heaton, T. H., & Kanamori, H. (1999). Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 15(3), 557–564. https://doi.org/10.1193/1.1586058. Weston, J., Engdahl, E. R., Harris, J., Giacomo, D. D., & Storchak, D. A. (2018). ISC-EHB: Reconstruction of a robust earthquake data set. Geophysical Journal International, 214(1), 474–484. https://doi.org/10.1093/gji/ggy155.